Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289300479> ?p ?o ?g. }
Showing items 1 to 43 of
43
with 100 items per page.
- W4289300479 abstract "Collected data, which is used for analysis or prediction tasks, often have a hierarchical structure, for example, data from various people performing the same task. Modeling the data's structure can improve the reliability of the derived results and prediction performance of newly unobserved data. Bayesian modeling provides a tool-kit for designing hierarchical models. However, Markov Chain Monte Carlo methods which are commonly used for parameter estimation are computationally expensive. This often renders its use for many applications not applicable. However, variational Bayesian methods allow to derive an approximation with much less computational effort. This document describes the derivation of a variational approximation for a hierarchical linear Bayesian regression and demonstrates its application to data analysis." @default.
- W4289300479 created "2022-08-02" @default.
- W4289300479 creator A5025481368 @default.
- W4289300479 date "2018-11-08" @default.
- W4289300479 modified "2023-09-26" @default.
- W4289300479 title "Variational Bayesian hierarchical regression for data analysis" @default.
- W4289300479 doi "https://doi.org/10.48550/arxiv.1811.03687" @default.
- W4289300479 hasPublicationYear "2018" @default.
- W4289300479 type Work @default.
- W4289300479 citedByCount "0" @default.
- W4289300479 crossrefType "posted-content" @default.
- W4289300479 hasAuthorship W4289300479A5025481368 @default.
- W4289300479 hasBestOaLocation W42893004791 @default.
- W4289300479 hasConcept C105795698 @default.
- W4289300479 hasConcept C107673813 @default.
- W4289300479 hasConcept C149782125 @default.
- W4289300479 hasConcept C152877465 @default.
- W4289300479 hasConcept C154945302 @default.
- W4289300479 hasConcept C160234255 @default.
- W4289300479 hasConcept C191413810 @default.
- W4289300479 hasConcept C33923547 @default.
- W4289300479 hasConcept C37903108 @default.
- W4289300479 hasConcept C41008148 @default.
- W4289300479 hasConcept C53059260 @default.
- W4289300479 hasConcept C83546350 @default.
- W4289300479 hasConceptScore W4289300479C105795698 @default.
- W4289300479 hasConceptScore W4289300479C107673813 @default.
- W4289300479 hasConceptScore W4289300479C149782125 @default.
- W4289300479 hasConceptScore W4289300479C152877465 @default.
- W4289300479 hasConceptScore W4289300479C154945302 @default.
- W4289300479 hasConceptScore W4289300479C160234255 @default.
- W4289300479 hasConceptScore W4289300479C191413810 @default.
- W4289300479 hasConceptScore W4289300479C33923547 @default.
- W4289300479 hasConceptScore W4289300479C37903108 @default.
- W4289300479 hasConceptScore W4289300479C41008148 @default.
- W4289300479 hasConceptScore W4289300479C53059260 @default.
- W4289300479 hasConceptScore W4289300479C83546350 @default.
- W4289300479 hasLocation W42893004791 @default.
- W4289300479 hasOpenAccess W4289300479 @default.
- W4289300479 hasPrimaryLocation W42893004791 @default.
- W4289300479 isParatext "false" @default.
- W4289300479 isRetracted "false" @default.
- W4289300479 workType "article" @default.