Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289314249> ?p ?o ?g. }
- W4289314249 endingPage "3679" @default.
- W4289314249 startingPage "3679" @default.
- W4289314249 abstract "Monitoring the seasonal leaf nutrients of mangrove forests helps one to understand the dynamics of carbon (C) sequestration and to diagnose the availability and limitation of nitrogen (N) and phosphorus (P). To date, very little attention has been paid to mapping the seasonal leaf C, N, and P of mangrove forests with remote sensing techniques. Based on Sentinel-2 images taken in spring, summer, and winter, this study aimed to compare three machine learning models (XGBoost, extreme gradient boosting; RF, random forest; LightGBM, light gradient boosting machine) in estimating the three leaf nutrients and further to apply the best-performing model to map the leaf nutrients of 15 seasons from 2017 to 2021. The results showed that there were significant differences in leaf nutrients (p < 0.05) across the three seasons. Among the three machine learning models, XGBoost with sensitive spectral features of Sentinel-2 images was optimal for estimating the leaf C (R2 = 0.655, 0.799, and 0.829 in spring, summer, and winter, respectively), N (R2 = 0.668, 0.743, and 0.704) and P (R2 = 0.539, 0.622, and 0.596) over the three seasons. Moreover, the red-edge (especially B6) and near-infrared bands (B8 and B8a) of Sentinel-2 images were efficient estimators of mangrove leaf nutrients. The information of species, elevation, and canopy structure (leaf area index [LAI] and canopy height) would be incorporated into the present model to improve the model accuracy and transferability in future studies." @default.
- W4289314249 created "2022-08-02" @default.
- W4289314249 creator A5004227149 @default.
- W4289314249 creator A5030822601 @default.
- W4289314249 creator A5033783316 @default.
- W4289314249 creator A5054499454 @default.
- W4289314249 creator A5057533193 @default.
- W4289314249 creator A5062297475 @default.
- W4289314249 creator A5070114140 @default.
- W4289314249 creator A5077572366 @default.
- W4289314249 date "2022-08-01" @default.
- W4289314249 modified "2023-10-14" @default.
- W4289314249 title "Mapping Seasonal Leaf Nutrients of Mangrove with Sentinel-2 Images and XGBoost Method" @default.
- W4289314249 cites W1514464039 @default.
- W4289314249 cites W1554300312 @default.
- W4289314249 cites W1975329034 @default.
- W4289314249 cites W1987097445 @default.
- W4289314249 cites W1999803596 @default.
- W4289314249 cites W2008283621 @default.
- W4289314249 cites W2011010318 @default.
- W4289314249 cites W2012456614 @default.
- W4289314249 cites W2012686349 @default.
- W4289314249 cites W2024700522 @default.
- W4289314249 cites W2030106896 @default.
- W4289314249 cites W2034085189 @default.
- W4289314249 cites W2046404820 @default.
- W4289314249 cites W2049398443 @default.
- W4289314249 cites W2055145717 @default.
- W4289314249 cites W2071771877 @default.
- W4289314249 cites W2098238272 @default.
- W4289314249 cites W2098247895 @default.
- W4289314249 cites W2098828870 @default.
- W4289314249 cites W2100812469 @default.
- W4289314249 cites W2107647949 @default.
- W4289314249 cites W2109006150 @default.
- W4289314249 cites W2111947859 @default.
- W4289314249 cites W2112448118 @default.
- W4289314249 cites W2112464514 @default.
- W4289314249 cites W2118295263 @default.
- W4289314249 cites W2125382680 @default.
- W4289314249 cites W2126236168 @default.
- W4289314249 cites W2137608957 @default.
- W4289314249 cites W2157294197 @default.
- W4289314249 cites W2157760685 @default.
- W4289314249 cites W2159961845 @default.
- W4289314249 cites W2161815745 @default.
- W4289314249 cites W2163410149 @default.
- W4289314249 cites W2267076915 @default.
- W4289314249 cites W2553560332 @default.
- W4289314249 cites W2556851635 @default.
- W4289314249 cites W2561682572 @default.
- W4289314249 cites W2602438080 @default.
- W4289314249 cites W2753174391 @default.
- W4289314249 cites W2805142011 @default.
- W4289314249 cites W2810621926 @default.
- W4289314249 cites W2853195673 @default.
- W4289314249 cites W2959824742 @default.
- W4289314249 cites W2962723135 @default.
- W4289314249 cites W2966191355 @default.
- W4289314249 cites W2967896173 @default.
- W4289314249 cites W2970364834 @default.
- W4289314249 cites W3102476541 @default.
- W4289314249 cites W3123141844 @default.
- W4289314249 cites W3137122322 @default.
- W4289314249 cites W3152432465 @default.
- W4289314249 cites W3170187841 @default.
- W4289314249 cites W3171621348 @default.
- W4289314249 cites W3180386760 @default.
- W4289314249 cites W3193637599 @default.
- W4289314249 cites W3194396254 @default.
- W4289314249 cites W3197082922 @default.
- W4289314249 cites W3216564922 @default.
- W4289314249 cites W4200008200 @default.
- W4289314249 cites W4200406191 @default.
- W4289314249 cites W4281260247 @default.
- W4289314249 doi "https://doi.org/10.3390/rs14153679" @default.
- W4289314249 hasPublicationYear "2022" @default.
- W4289314249 type Work @default.
- W4289314249 citedByCount "7" @default.
- W4289314249 countsByYear W42893142492023 @default.
- W4289314249 crossrefType "journal-article" @default.
- W4289314249 hasAuthorship W4289314249A5004227149 @default.
- W4289314249 hasAuthorship W4289314249A5030822601 @default.
- W4289314249 hasAuthorship W4289314249A5033783316 @default.
- W4289314249 hasAuthorship W4289314249A5054499454 @default.
- W4289314249 hasAuthorship W4289314249A5057533193 @default.
- W4289314249 hasAuthorship W4289314249A5062297475 @default.
- W4289314249 hasAuthorship W4289314249A5070114140 @default.
- W4289314249 hasAuthorship W4289314249A5077572366 @default.
- W4289314249 hasBestOaLocation W42893142491 @default.
- W4289314249 hasConcept C101000010 @default.
- W4289314249 hasConcept C142796444 @default.
- W4289314249 hasConcept C18903297 @default.
- W4289314249 hasConcept C205649164 @default.
- W4289314249 hasConcept C25989453 @default.
- W4289314249 hasConcept C39432304 @default.
- W4289314249 hasConcept C59822182 @default.
- W4289314249 hasConcept C62649853 @default.