Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289344836> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4289344836 endingPage "3684" @default.
- W4289344836 startingPage "3684" @default.
- W4289344836 abstract "Clusters of dead trees are forest fires-prone. To maintain ecological balance and realize its protection, timely detection of dead trees in forest remote sensing images using existing computer vision methods is of great significance. Remote sensing images captured by Unmanned aerial vehicles (UAVs) typically have several issues, e.g., mixed distribution of adjacent but different tree classes, interference of redundant information, and high differences in scales of dead tree clusters, making the detection of dead tree clusters much more challenging. Therefore, based on the Multipath dense composite network (MDCN), an object detection method called LLAM-MDCNet is proposed in this paper. First, a feature extraction network called Multipath dense composite network is designed. The network’s multipath structure can substantially increase the extraction of underlying and semantic features to enhance its extraction capability for rich-information regions. Following that, in the row, column, and diagonal directions, the Longitude Latitude Attention Mechanism (LLAM) is presented and incorporated into the feature extraction network. The multi-directional LLAM facilitates the suppression of irrelevant and redundant information and improves the representation of high-level semantic feature information. Lastly, an AugFPN is employed for down-sampling, yielding a more comprehensive representation of image features with the combination of low-level texture features and high-level semantic information. Consequently, the network’s detection effect for dead tree cluster targets with high-scale differences is improved. Furthermore, we make the collected high-quality aerial dead tree cluster dataset containing 19,517 images shot by drones publicly available for other researchers to improve the work in this paper. Our proposed method achieved 87.25% mAP with an FPS of 66 on our dataset, demonstrating the effectiveness of the LLAM-MDCNet for detecting dead tree cluster targets in forest remote sensing images." @default.
- W4289344836 created "2022-08-02" @default.
- W4289344836 creator A5001305383 @default.
- W4289344836 creator A5001999300 @default.
- W4289344836 creator A5029768197 @default.
- W4289344836 creator A5048774608 @default.
- W4289344836 creator A5072820730 @default.
- W4289344836 creator A5090708899 @default.
- W4289344836 date "2022-08-01" @default.
- W4289344836 modified "2023-10-14" @default.
- W4289344836 title "LLAM-MDCNet for Detecting Remote Sensing Images of Dead Tree Clusters" @default.
- W4289344836 cites W1482235108 @default.
- W4289344836 cites W1902237438 @default.
- W4289344836 cites W1999312795 @default.
- W4289344836 cites W2068945922 @default.
- W4289344836 cites W2163542360 @default.
- W4289344836 cites W2202499615 @default.
- W4289344836 cites W2344310038 @default.
- W4289344836 cites W2568763792 @default.
- W4289344836 cites W2790021535 @default.
- W4289344836 cites W2963260202 @default.
- W4289344836 cites W2963333747 @default.
- W4289344836 cites W2981609437 @default.
- W4289344836 cites W2990371274 @default.
- W4289344836 cites W3043740003 @default.
- W4289344836 cites W3046857037 @default.
- W4289344836 cites W3049455115 @default.
- W4289344836 cites W3127319645 @default.
- W4289344836 cites W3134221894 @default.
- W4289344836 cites W3205604798 @default.
- W4289344836 cites W3209586559 @default.
- W4289344836 cites W3210839290 @default.
- W4289344836 doi "https://doi.org/10.3390/rs14153684" @default.
- W4289344836 hasPublicationYear "2022" @default.
- W4289344836 type Work @default.
- W4289344836 citedByCount "2" @default.
- W4289344836 countsByYear W42893448362022 @default.
- W4289344836 countsByYear W42893448362023 @default.
- W4289344836 crossrefType "journal-article" @default.
- W4289344836 hasAuthorship W4289344836A5001305383 @default.
- W4289344836 hasAuthorship W4289344836A5001999300 @default.
- W4289344836 hasAuthorship W4289344836A5029768197 @default.
- W4289344836 hasAuthorship W4289344836A5048774608 @default.
- W4289344836 hasAuthorship W4289344836A5072820730 @default.
- W4289344836 hasAuthorship W4289344836A5090708899 @default.
- W4289344836 hasBestOaLocation W42893448361 @default.
- W4289344836 hasConcept C113174947 @default.
- W4289344836 hasConcept C124101348 @default.
- W4289344836 hasConcept C134306372 @default.
- W4289344836 hasConcept C138885662 @default.
- W4289344836 hasConcept C153180895 @default.
- W4289344836 hasConcept C154945302 @default.
- W4289344836 hasConcept C205649164 @default.
- W4289344836 hasConcept C2776401178 @default.
- W4289344836 hasConcept C31972630 @default.
- W4289344836 hasConcept C33923547 @default.
- W4289344836 hasConcept C41008148 @default.
- W4289344836 hasConcept C41895202 @default.
- W4289344836 hasConcept C52622490 @default.
- W4289344836 hasConcept C62649853 @default.
- W4289344836 hasConceptScore W4289344836C113174947 @default.
- W4289344836 hasConceptScore W4289344836C124101348 @default.
- W4289344836 hasConceptScore W4289344836C134306372 @default.
- W4289344836 hasConceptScore W4289344836C138885662 @default.
- W4289344836 hasConceptScore W4289344836C153180895 @default.
- W4289344836 hasConceptScore W4289344836C154945302 @default.
- W4289344836 hasConceptScore W4289344836C205649164 @default.
- W4289344836 hasConceptScore W4289344836C2776401178 @default.
- W4289344836 hasConceptScore W4289344836C31972630 @default.
- W4289344836 hasConceptScore W4289344836C33923547 @default.
- W4289344836 hasConceptScore W4289344836C41008148 @default.
- W4289344836 hasConceptScore W4289344836C41895202 @default.
- W4289344836 hasConceptScore W4289344836C52622490 @default.
- W4289344836 hasConceptScore W4289344836C62649853 @default.
- W4289344836 hasIssue "15" @default.
- W4289344836 hasLocation W42893448361 @default.
- W4289344836 hasLocation W42893448362 @default.
- W4289344836 hasOpenAccess W4289344836 @default.
- W4289344836 hasPrimaryLocation W42893448361 @default.
- W4289344836 hasRelatedWork W1504288058 @default.
- W4289344836 hasRelatedWork W2017205855 @default.
- W4289344836 hasRelatedWork W2048505601 @default.
- W4289344836 hasRelatedWork W2146076056 @default.
- W4289344836 hasRelatedWork W2167293474 @default.
- W4289344836 hasRelatedWork W2331674254 @default.
- W4289344836 hasRelatedWork W2546942002 @default.
- W4289344836 hasRelatedWork W2811390910 @default.
- W4289344836 hasRelatedWork W2979079341 @default.
- W4289344836 hasRelatedWork W3042897387 @default.
- W4289344836 hasVolume "14" @default.
- W4289344836 isParatext "false" @default.
- W4289344836 isRetracted "false" @default.
- W4289344836 workType "article" @default.