Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289346871> ?p ?o ?g. }
- W4289346871 abstract "Summary Scientific and technological advancements lead to the continuous generation of a large amount of data. These datasets are analyzed computationally to reveal patterns and trends. While the presence of noisy and irrelevant features or attributes in these datasets is unavoidable, they negatively impact the performance of classification techniques. Feature selection is a method to pre‐process these datasets by selecting the most informative features while concurrently improving the classification accuracy. Recently, several metaheuristic algorithms were employed in this feature selection process, including particle swarm optimization (PSO). PSO is prominent in the field of feature selection due to its simplicity and global search abilities. However, it may get stuck in local optima. To solve this problem, a new update mechanism in PSO is proposed and the PSO is hybridized with a local search method. To evaluate the performance of the proposed algorithm, benchmark datasets from the University of California in Irvine (UCI) repository were utilized, the k‐nearest neighbor as the classifier. Results show that the proposed feature selection technique outperforms other optimization algorithms on these feature selection problems." @default.
- W4289346871 created "2022-08-02" @default.
- W4289346871 creator A5001280807 @default.
- W4289346871 creator A5023827050 @default.
- W4289346871 creator A5041454217 @default.
- W4289346871 creator A5078446038 @default.
- W4289346871 date "2022-08-01" @default.
- W4289346871 modified "2023-09-26" @default.
- W4289346871 title "Hybrid particle swarm optimization with sequential one point flipping algorithm for feature selection" @default.
- W4289346871 cites W1543715688 @default.
- W4289346871 cites W1553244859 @default.
- W4289346871 cites W1993885071 @default.
- W4289346871 cites W2001979953 @default.
- W4289346871 cites W2024060531 @default.
- W4289346871 cites W2030363461 @default.
- W4289346871 cites W2077140264 @default.
- W4289346871 cites W2096081771 @default.
- W4289346871 cites W2096673585 @default.
- W4289346871 cites W2163877626 @default.
- W4289346871 cites W2164934768 @default.
- W4289346871 cites W2252766355 @default.
- W4289346871 cites W2290883490 @default.
- W4289346871 cites W2343420905 @default.
- W4289346871 cites W2738900493 @default.
- W4289346871 cites W2811460725 @default.
- W4289346871 cites W2901312974 @default.
- W4289346871 cites W2914717758 @default.
- W4289346871 cites W2919979744 @default.
- W4289346871 cites W2947087124 @default.
- W4289346871 cites W2947318733 @default.
- W4289346871 cites W2963103847 @default.
- W4289346871 cites W2964358470 @default.
- W4289346871 cites W2965744895 @default.
- W4289346871 cites W2974173314 @default.
- W4289346871 cites W2977238585 @default.
- W4289346871 cites W2980570898 @default.
- W4289346871 cites W2992674204 @default.
- W4289346871 cites W2997585558 @default.
- W4289346871 cites W3023596779 @default.
- W4289346871 cites W3042921284 @default.
- W4289346871 cites W3048412361 @default.
- W4289346871 cites W3080473944 @default.
- W4289346871 cites W3092431010 @default.
- W4289346871 cites W3094704314 @default.
- W4289346871 cites W3101181897 @default.
- W4289346871 cites W3107851601 @default.
- W4289346871 cites W3117495151 @default.
- W4289346871 cites W3124789242 @default.
- W4289346871 cites W3164271353 @default.
- W4289346871 cites W3164712058 @default.
- W4289346871 cites W3184921930 @default.
- W4289346871 cites W414544266 @default.
- W4289346871 cites W4289694552 @default.
- W4289346871 cites W49513413 @default.
- W4289346871 cites W780025478 @default.
- W4289346871 cites W883434633 @default.
- W4289346871 doi "https://doi.org/10.1002/cpe.7239" @default.
- W4289346871 hasPublicationYear "2022" @default.
- W4289346871 type Work @default.
- W4289346871 citedByCount "0" @default.
- W4289346871 crossrefType "journal-article" @default.
- W4289346871 hasAuthorship W4289346871A5001280807 @default.
- W4289346871 hasAuthorship W4289346871A5023827050 @default.
- W4289346871 hasAuthorship W4289346871A5041454217 @default.
- W4289346871 hasAuthorship W4289346871A5078446038 @default.
- W4289346871 hasConcept C109718341 @default.
- W4289346871 hasConcept C11413529 @default.
- W4289346871 hasConcept C119487961 @default.
- W4289346871 hasConcept C124101348 @default.
- W4289346871 hasConcept C13280743 @default.
- W4289346871 hasConcept C138885662 @default.
- W4289346871 hasConcept C141934464 @default.
- W4289346871 hasConcept C148483581 @default.
- W4289346871 hasConcept C153180895 @default.
- W4289346871 hasConcept C154945302 @default.
- W4289346871 hasConcept C185798385 @default.
- W4289346871 hasConcept C205649164 @default.
- W4289346871 hasConcept C2776401178 @default.
- W4289346871 hasConcept C41008148 @default.
- W4289346871 hasConcept C41895202 @default.
- W4289346871 hasConcept C81917197 @default.
- W4289346871 hasConcept C85617194 @default.
- W4289346871 hasConcept C95623464 @default.
- W4289346871 hasConceptScore W4289346871C109718341 @default.
- W4289346871 hasConceptScore W4289346871C11413529 @default.
- W4289346871 hasConceptScore W4289346871C119487961 @default.
- W4289346871 hasConceptScore W4289346871C124101348 @default.
- W4289346871 hasConceptScore W4289346871C13280743 @default.
- W4289346871 hasConceptScore W4289346871C138885662 @default.
- W4289346871 hasConceptScore W4289346871C141934464 @default.
- W4289346871 hasConceptScore W4289346871C148483581 @default.
- W4289346871 hasConceptScore W4289346871C153180895 @default.
- W4289346871 hasConceptScore W4289346871C154945302 @default.
- W4289346871 hasConceptScore W4289346871C185798385 @default.
- W4289346871 hasConceptScore W4289346871C205649164 @default.
- W4289346871 hasConceptScore W4289346871C2776401178 @default.
- W4289346871 hasConceptScore W4289346871C41008148 @default.
- W4289346871 hasConceptScore W4289346871C41895202 @default.
- W4289346871 hasConceptScore W4289346871C81917197 @default.
- W4289346871 hasConceptScore W4289346871C85617194 @default.