Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289362007> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W4289362007 abstract "In this paper, we study a nonlocal variational problem which consists of minimizing in $L^2$ the sum of a quadratic data fidelity and a regularization term corresponding to the $L^p$-norm of the nonlocal gradient. In particular, we study convergence of the numerical solution to a discrete version of this nonlocal variational problem to the unique solution of the continuum one. To do so, we derive an error bound and highlight the role of the initial data and the kernel governing the nonlocal interactions. When applied to variational problem on graphs, this error bound allows us to show the consistency of the discretized variational problem as the number of vertices goes to infinity. More precisely, for networks in convergent graph sequences (simple and weighted deterministic dense graphs as well as random inhomogeneous graphs), we prove convergence and provide rate of convergence of solutions for the discrete models to the solution of the continuum problem as the number of vertices grows." @default.
- W4289362007 created "2022-08-02" @default.
- W4289362007 creator A5008136365 @default.
- W4289362007 creator A5055793444 @default.
- W4289362007 creator A5068967480 @default.
- W4289362007 date "2018-10-30" @default.
- W4289362007 modified "2023-10-17" @default.
- W4289362007 title "Nonlocal $p$-Laplacian Variational problems on graphs" @default.
- W4289362007 doi "https://doi.org/10.48550/arxiv.1810.12817" @default.
- W4289362007 hasPublicationYear "2018" @default.
- W4289362007 type Work @default.
- W4289362007 citedByCount "0" @default.
- W4289362007 crossrefType "posted-content" @default.
- W4289362007 hasAuthorship W4289362007A5008136365 @default.
- W4289362007 hasAuthorship W4289362007A5055793444 @default.
- W4289362007 hasAuthorship W4289362007A5068967480 @default.
- W4289362007 hasBestOaLocation W42893620071 @default.
- W4289362007 hasConcept C114614502 @default.
- W4289362007 hasConcept C115178988 @default.
- W4289362007 hasConcept C129844170 @default.
- W4289362007 hasConcept C132525143 @default.
- W4289362007 hasConcept C134306372 @default.
- W4289362007 hasConcept C2524010 @default.
- W4289362007 hasConcept C28826006 @default.
- W4289362007 hasConcept C33923547 @default.
- W4289362007 hasConcept C73000952 @default.
- W4289362007 hasConceptScore W4289362007C114614502 @default.
- W4289362007 hasConceptScore W4289362007C115178988 @default.
- W4289362007 hasConceptScore W4289362007C129844170 @default.
- W4289362007 hasConceptScore W4289362007C132525143 @default.
- W4289362007 hasConceptScore W4289362007C134306372 @default.
- W4289362007 hasConceptScore W4289362007C2524010 @default.
- W4289362007 hasConceptScore W4289362007C28826006 @default.
- W4289362007 hasConceptScore W4289362007C33923547 @default.
- W4289362007 hasConceptScore W4289362007C73000952 @default.
- W4289362007 hasLocation W42893620071 @default.
- W4289362007 hasOpenAccess W4289362007 @default.
- W4289362007 hasPrimaryLocation W42893620071 @default.
- W4289362007 hasRelatedWork W1451861510 @default.
- W4289362007 hasRelatedWork W1457563521 @default.
- W4289362007 hasRelatedWork W1985075441 @default.
- W4289362007 hasRelatedWork W2060032448 @default.
- W4289362007 hasRelatedWork W2060612917 @default.
- W4289362007 hasRelatedWork W2479246885 @default.
- W4289362007 hasRelatedWork W2886996249 @default.
- W4289362007 hasRelatedWork W3154553233 @default.
- W4289362007 hasRelatedWork W3174080020 @default.
- W4289362007 hasRelatedWork W1774782920 @default.
- W4289362007 isParatext "false" @default.
- W4289362007 isRetracted "false" @default.
- W4289362007 workType "article" @default.