Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289363418> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4289363418 abstract "M{o}bius transformations have been used in numerical algorithms for computing eigenvalues and invariant subspaces of structured generalized and polynomial eigenvalue problems (PEPs). These transformations convert problems with certain structures arising in applications into problems with other structures and whose eigenvalues and invariant subspaces are easily related to the ones of the original problem. Thus, an algorithm that is efficient and stable for some particular structure can be used for solving efficiently another type of structured problem via an adequate M{o}bius transformation. A key question in this context is whether these transformations may change significantly the conditioning of the problem and the backward errors of the computed solutions, since, in that case, their use may lead to unreliable results. We present the first general study on the effect of M{o}bius transformations on the eigenvalue condition numbers and backward errors of approximate eigenpairs of PEPs. By using the homogeneous formulation of PEPs, we are able to obtain two clear and simple results. First, we show that, if the matrix inducing the M{o}bius transformation is well conditioned, then such transformation approximately preserves the eigenvalue condition numbers and backward errors when they are defined with respect to perturbations of the matrix polynomial which are small relative to the norm of the polynomial. However, if the perturbations in each coefficient of the matrix polynomial are small relative to the norm of that coefficient, then the corresponding eigenvalue condition numbers and backward errors are preserved approximately by the M{o}bius transformations induced by well-conditioned matrices only if a penalty factor, depending on those coefficients, is moderate. It is important to note that these simple results are no longer true if a non-homogeneous formulation is used." @default.
- W4289363418 created "2022-08-02" @default.
- W4289363418 creator A5010257458 @default.
- W4289363418 creator A5055740360 @default.
- W4289363418 creator A5076369577 @default.
- W4289363418 date "2018-10-26" @default.
- W4289363418 modified "2023-09-27" @default.
- W4289363418 title "Conditioning and backward errors of eigenvalues of homogeneous matrix polynomials under M{o}bius transformations" @default.
- W4289363418 doi "https://doi.org/10.48550/arxiv.1810.11495" @default.
- W4289363418 hasPublicationYear "2018" @default.
- W4289363418 type Work @default.
- W4289363418 citedByCount "0" @default.
- W4289363418 crossrefType "posted-content" @default.
- W4289363418 hasAuthorship W4289363418A5010257458 @default.
- W4289363418 hasAuthorship W4289363418A5055740360 @default.
- W4289363418 hasAuthorship W4289363418A5076369577 @default.
- W4289363418 hasBestOaLocation W42893634181 @default.
- W4289363418 hasConcept C101044782 @default.
- W4289363418 hasConcept C104317684 @default.
- W4289363418 hasConcept C106487976 @default.
- W4289363418 hasConcept C121332964 @default.
- W4289363418 hasConcept C12362212 @default.
- W4289363418 hasConcept C126352355 @default.
- W4289363418 hasConcept C134306372 @default.
- W4289363418 hasConcept C158693339 @default.
- W4289363418 hasConcept C159985019 @default.
- W4289363418 hasConcept C165443888 @default.
- W4289363418 hasConcept C17103678 @default.
- W4289363418 hasConcept C17744445 @default.
- W4289363418 hasConcept C185592680 @default.
- W4289363418 hasConcept C190470478 @default.
- W4289363418 hasConcept C191795146 @default.
- W4289363418 hasConcept C192562407 @default.
- W4289363418 hasConcept C199539241 @default.
- W4289363418 hasConcept C202444582 @default.
- W4289363418 hasConcept C204241405 @default.
- W4289363418 hasConcept C28826006 @default.
- W4289363418 hasConcept C33923547 @default.
- W4289363418 hasConcept C37914503 @default.
- W4289363418 hasConcept C39920418 @default.
- W4289363418 hasConcept C55493867 @default.
- W4289363418 hasConcept C62520636 @default.
- W4289363418 hasConcept C74650414 @default.
- W4289363418 hasConcept C84545080 @default.
- W4289363418 hasConcept C90119067 @default.
- W4289363418 hasConcept C92207270 @default.
- W4289363418 hasConceptScore W4289363418C101044782 @default.
- W4289363418 hasConceptScore W4289363418C104317684 @default.
- W4289363418 hasConceptScore W4289363418C106487976 @default.
- W4289363418 hasConceptScore W4289363418C121332964 @default.
- W4289363418 hasConceptScore W4289363418C12362212 @default.
- W4289363418 hasConceptScore W4289363418C126352355 @default.
- W4289363418 hasConceptScore W4289363418C134306372 @default.
- W4289363418 hasConceptScore W4289363418C158693339 @default.
- W4289363418 hasConceptScore W4289363418C159985019 @default.
- W4289363418 hasConceptScore W4289363418C165443888 @default.
- W4289363418 hasConceptScore W4289363418C17103678 @default.
- W4289363418 hasConceptScore W4289363418C17744445 @default.
- W4289363418 hasConceptScore W4289363418C185592680 @default.
- W4289363418 hasConceptScore W4289363418C190470478 @default.
- W4289363418 hasConceptScore W4289363418C191795146 @default.
- W4289363418 hasConceptScore W4289363418C192562407 @default.
- W4289363418 hasConceptScore W4289363418C199539241 @default.
- W4289363418 hasConceptScore W4289363418C202444582 @default.
- W4289363418 hasConceptScore W4289363418C204241405 @default.
- W4289363418 hasConceptScore W4289363418C28826006 @default.
- W4289363418 hasConceptScore W4289363418C33923547 @default.
- W4289363418 hasConceptScore W4289363418C37914503 @default.
- W4289363418 hasConceptScore W4289363418C39920418 @default.
- W4289363418 hasConceptScore W4289363418C55493867 @default.
- W4289363418 hasConceptScore W4289363418C62520636 @default.
- W4289363418 hasConceptScore W4289363418C74650414 @default.
- W4289363418 hasConceptScore W4289363418C84545080 @default.
- W4289363418 hasConceptScore W4289363418C90119067 @default.
- W4289363418 hasConceptScore W4289363418C92207270 @default.
- W4289363418 hasLocation W42893634181 @default.
- W4289363418 hasLocation W42893634182 @default.
- W4289363418 hasOpenAccess W4289363418 @default.
- W4289363418 hasPrimaryLocation W42893634181 @default.
- W4289363418 hasRelatedWork W1981843820 @default.
- W4289363418 hasRelatedWork W2011489190 @default.
- W4289363418 hasRelatedWork W2023591909 @default.
- W4289363418 hasRelatedWork W2152391632 @default.
- W4289363418 hasRelatedWork W2352964114 @default.
- W4289363418 hasRelatedWork W2798708623 @default.
- W4289363418 hasRelatedWork W2898267782 @default.
- W4289363418 hasRelatedWork W4289363418 @default.
- W4289363418 hasRelatedWork W4291002480 @default.
- W4289363418 hasRelatedWork W2102490576 @default.
- W4289363418 isParatext "false" @default.
- W4289363418 isRetracted "false" @default.
- W4289363418 workType "article" @default.