Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289422015> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W4289422015 abstract "The text generated on social media platforms is essentially a mixed lingual text. The mixing of language in any form produces considerable amount of difficulty in language processing systems. Moreover, the advancements in language processing research depends upon the availability of standard corpora. The development of mixed lingual Indian Named Entity Recognition (NER) systems are facing obstacles due to unavailability of the standard evaluation corpora. Such corpora may be of mixed lingual nature in which text is written using multiple languages predominantly using a single script only. The motivation of our work is to emphasize the automatic generation such kind of corpora in order to encourage mixed lingual Indian NER. The paper presents the preparation of a Cross Script Hindi-English Corpora from Wikipedia category pages. The corpora is successfully annotated using standard CoNLL-2003 categories of PER, LOC, ORG, and MISC. Its evaluation is carried out on a variety of machine learning algorithms and favorable results are achieved." @default.
- W4289422015 created "2022-08-02" @default.
- W4289422015 creator A5028290404 @default.
- W4289422015 creator A5076539184 @default.
- W4289422015 creator A5080846371 @default.
- W4289422015 date "2018-10-08" @default.
- W4289422015 modified "2023-09-27" @default.
- W4289422015 title "Cross Script Hindi English NER Corpus from Wikipedia" @default.
- W4289422015 doi "https://doi.org/10.48550/arxiv.1810.03430" @default.
- W4289422015 hasPublicationYear "2018" @default.
- W4289422015 type Work @default.
- W4289422015 citedByCount "0" @default.
- W4289422015 crossrefType "posted-content" @default.
- W4289422015 hasAuthorship W4289422015A5028290404 @default.
- W4289422015 hasAuthorship W4289422015A5076539184 @default.
- W4289422015 hasAuthorship W4289422015A5080846371 @default.
- W4289422015 hasBestOaLocation W42894220151 @default.
- W4289422015 hasConcept C105795698 @default.
- W4289422015 hasConcept C136197465 @default.
- W4289422015 hasConcept C154945302 @default.
- W4289422015 hasConcept C204321447 @default.
- W4289422015 hasConcept C2780505938 @default.
- W4289422015 hasConcept C33923547 @default.
- W4289422015 hasConcept C41008148 @default.
- W4289422015 hasConcept C519982507 @default.
- W4289422015 hasConceptScore W4289422015C105795698 @default.
- W4289422015 hasConceptScore W4289422015C136197465 @default.
- W4289422015 hasConceptScore W4289422015C154945302 @default.
- W4289422015 hasConceptScore W4289422015C204321447 @default.
- W4289422015 hasConceptScore W4289422015C2780505938 @default.
- W4289422015 hasConceptScore W4289422015C33923547 @default.
- W4289422015 hasConceptScore W4289422015C41008148 @default.
- W4289422015 hasConceptScore W4289422015C519982507 @default.
- W4289422015 hasLocation W42894220151 @default.
- W4289422015 hasOpenAccess W4289422015 @default.
- W4289422015 hasPrimaryLocation W42894220151 @default.
- W4289422015 hasRelatedWork W1593502373 @default.
- W4289422015 hasRelatedWork W2907629636 @default.
- W4289422015 hasRelatedWork W2913533934 @default.
- W4289422015 hasRelatedWork W2952582185 @default.
- W4289422015 hasRelatedWork W3022937510 @default.
- W4289422015 hasRelatedWork W3087125265 @default.
- W4289422015 hasRelatedWork W3104382433 @default.
- W4289422015 hasRelatedWork W3169305685 @default.
- W4289422015 hasRelatedWork W4205316385 @default.
- W4289422015 hasRelatedWork W4289422015 @default.
- W4289422015 isParatext "false" @default.
- W4289422015 isRetracted "false" @default.
- W4289422015 workType "article" @default.