Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289435178> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W4289435178 abstract "An open packing in a graph $G$ is a set $S$ of vertices in $G$ such that no two vertices in $S$ have a common neighbor in $G$. The injective chromatic number $chi_i(G)$ of $G$ is the smallest number of colors assigned to vertices of $G$ such that each color class is an open packing. Alternatively, the injective chromatic number of $G$ is the chromatic number of the two-step graph of $G$, which is the graph with the same vertex set as $G$ in which two vertices are adjacent if they have a common neighbor. The concept of injective coloring has been studied by many authors, while in the present paper we approach it from two novel perspectives, related to open packings and the two-step graph operation. We prove several general bounds on the injective chromatic number expressed in terms of the open packing number. In particular, we prove that $chi_{i}(G)geq frac{1}{2}+sqrt{frac{1}{4}+frac{2m-n}{opack}}$ holds for any connected graph $G$ of order $ngeq2$, size $m$, and the open packing number $opack$, and characterize the class of graphs attaining the bound. Regarding the well-known bound $chi_i(G)ge Delta(G)$, we describe the family of extremal graphs and prove that deciding when the equality holds (even for regular graphs) is NP-complete, solving an open problem from an earlier paper. Next, we consider the chromatic number of the two-step graph of a graph, and compare it with the clique number and the maximum degree of the graph. We present two large families of graphs in which $chi_i(G)$ equals the cardinality of a largest clique of the two-step graph of $G$. Finally, we consider classes of graphs that admit an injective coloring in which all color classes are maximal open packings. We give characterizations of three subclasses of these graphs among graphs with diameter $2$, and find a partial characterization of hypercubes with this property." @default.
- W4289435178 created "2022-08-02" @default.
- W4289435178 creator A5088195854 @default.
- W4289435178 creator A5089171322 @default.
- W4289435178 creator A5089443562 @default.
- W4289435178 date "2021-06-17" @default.
- W4289435178 modified "2023-09-23" @default.
- W4289435178 title "Injective coloring of graphs revisited" @default.
- W4289435178 doi "https://doi.org/10.48550/arxiv.2106.09823" @default.
- W4289435178 hasPublicationYear "2021" @default.
- W4289435178 type Work @default.
- W4289435178 citedByCount "0" @default.
- W4289435178 crossrefType "posted-content" @default.
- W4289435178 hasAuthorship W4289435178A5088195854 @default.
- W4289435178 hasAuthorship W4289435178A5089171322 @default.
- W4289435178 hasAuthorship W4289435178A5089443562 @default.
- W4289435178 hasBestOaLocation W42894351781 @default.
- W4289435178 hasConcept C114614502 @default.
- W4289435178 hasConcept C118615104 @default.
- W4289435178 hasConcept C128107574 @default.
- W4289435178 hasConcept C132525143 @default.
- W4289435178 hasConcept C134306372 @default.
- W4289435178 hasConcept C196956537 @default.
- W4289435178 hasConcept C33923547 @default.
- W4289435178 hasConcept C77553402 @default.
- W4289435178 hasConcept C80899671 @default.
- W4289435178 hasConceptScore W4289435178C114614502 @default.
- W4289435178 hasConceptScore W4289435178C118615104 @default.
- W4289435178 hasConceptScore W4289435178C128107574 @default.
- W4289435178 hasConceptScore W4289435178C132525143 @default.
- W4289435178 hasConceptScore W4289435178C134306372 @default.
- W4289435178 hasConceptScore W4289435178C196956537 @default.
- W4289435178 hasConceptScore W4289435178C33923547 @default.
- W4289435178 hasConceptScore W4289435178C77553402 @default.
- W4289435178 hasConceptScore W4289435178C80899671 @default.
- W4289435178 hasLocation W42894351781 @default.
- W4289435178 hasOpenAccess W4289435178 @default.
- W4289435178 hasPrimaryLocation W42894351781 @default.
- W4289435178 hasRelatedWork W16531662 @default.
- W4289435178 hasRelatedWork W26151073 @default.
- W4289435178 hasRelatedWork W36824309 @default.
- W4289435178 hasRelatedWork W48221434 @default.
- W4289435178 hasRelatedWork W52795131 @default.
- W4289435178 hasRelatedWork W59058852 @default.
- W4289435178 hasRelatedWork W7290368 @default.
- W4289435178 hasRelatedWork W9065265 @default.
- W4289435178 hasRelatedWork W34844546 @default.
- W4289435178 hasRelatedWork W36984011 @default.
- W4289435178 isParatext "false" @default.
- W4289435178 isRetracted "false" @default.
- W4289435178 workType "article" @default.