Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289436714> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4289436714 abstract "Clustering is a fundamental problem in unsupervised learning. Popular methods like K-means, may suffer from poor performance as they are prone to get stuck in its local minima. Recently, the sum-of-norms (SON) model (also known as the clustering path) has been proposed in Pelckmans et al. (2005), Lindsten et al. (2011) and Hocking et al. (2011). The perfect recovery properties of the convex clustering model with uniformly weighted all pairwise-differences regularization have been proved by Zhu et al. (2014) and Panahi et al. (2017). However, no theoretical guarantee has been established for the general weighted convex clustering model, where better empirical results have been observed. In the numerical optimization aspect, although algorithms like the alternating direction method of multipliers (ADMM) and the alternating minimization algorithm (AMA) have been proposed to solve the convex clustering model (Chi and Lange, 2015), it still remains very challenging to solve large-scale problems. In this paper, we establish sufficient conditions for the perfect recovery guarantee of the general weighted convex clustering model, which include and improve existing theoretical results as special cases. In addition, we develop a semismooth Newton based augmented Lagrangian method for solving large-scale convex clustering problems. Extensive numerical experiments on both simulated and real data demonstrate that our algorithm is highly efficient and robust for solving large-scale problems. Moreover, the numerical results also show the superior performance and scalability of our algorithm comparing to the existing first-order methods. In particular, our algorithm is able to solve a convex clustering problem with 200,000 points in $mathbb{R}^3$ in about 6 minutes." @default.
- W4289436714 created "2022-08-02" @default.
- W4289436714 creator A5004833182 @default.
- W4289436714 creator A5049182221 @default.
- W4289436714 creator A5064083862 @default.
- W4289436714 date "2018-10-04" @default.
- W4289436714 modified "2023-10-18" @default.
- W4289436714 title "Convex Clustering: Model, Theoretical Guarantee and Efficient Algorithm" @default.
- W4289436714 doi "https://doi.org/10.48550/arxiv.1810.02677" @default.
- W4289436714 hasPublicationYear "2018" @default.
- W4289436714 type Work @default.
- W4289436714 citedByCount "0" @default.
- W4289436714 crossrefType "posted-content" @default.
- W4289436714 hasAuthorship W4289436714A5004833182 @default.
- W4289436714 hasAuthorship W4289436714A5049182221 @default.
- W4289436714 hasAuthorship W4289436714A5064083862 @default.
- W4289436714 hasBestOaLocation W42894367141 @default.
- W4289436714 hasConcept C104047586 @default.
- W4289436714 hasConcept C112680207 @default.
- W4289436714 hasConcept C11413529 @default.
- W4289436714 hasConcept C126255220 @default.
- W4289436714 hasConcept C134306372 @default.
- W4289436714 hasConcept C154945302 @default.
- W4289436714 hasConcept C157972887 @default.
- W4289436714 hasConcept C186633575 @default.
- W4289436714 hasConcept C2524010 @default.
- W4289436714 hasConcept C2776135515 @default.
- W4289436714 hasConcept C27964816 @default.
- W4289436714 hasConcept C33923547 @default.
- W4289436714 hasConcept C41008148 @default.
- W4289436714 hasConcept C73555534 @default.
- W4289436714 hasConcept C94641424 @default.
- W4289436714 hasConceptScore W4289436714C104047586 @default.
- W4289436714 hasConceptScore W4289436714C112680207 @default.
- W4289436714 hasConceptScore W4289436714C11413529 @default.
- W4289436714 hasConceptScore W4289436714C126255220 @default.
- W4289436714 hasConceptScore W4289436714C134306372 @default.
- W4289436714 hasConceptScore W4289436714C154945302 @default.
- W4289436714 hasConceptScore W4289436714C157972887 @default.
- W4289436714 hasConceptScore W4289436714C186633575 @default.
- W4289436714 hasConceptScore W4289436714C2524010 @default.
- W4289436714 hasConceptScore W4289436714C2776135515 @default.
- W4289436714 hasConceptScore W4289436714C27964816 @default.
- W4289436714 hasConceptScore W4289436714C33923547 @default.
- W4289436714 hasConceptScore W4289436714C41008148 @default.
- W4289436714 hasConceptScore W4289436714C73555534 @default.
- W4289436714 hasConceptScore W4289436714C94641424 @default.
- W4289436714 hasLocation W42894367141 @default.
- W4289436714 hasOpenAccess W4289436714 @default.
- W4289436714 hasPrimaryLocation W42894367141 @default.
- W4289436714 hasRelatedWork W1495441429 @default.
- W4289436714 hasRelatedWork W1525022337 @default.
- W4289436714 hasRelatedWork W1965650377 @default.
- W4289436714 hasRelatedWork W2037184328 @default.
- W4289436714 hasRelatedWork W2290309368 @default.
- W4289436714 hasRelatedWork W2894664077 @default.
- W4289436714 hasRelatedWork W2964004217 @default.
- W4289436714 hasRelatedWork W3127907562 @default.
- W4289436714 hasRelatedWork W4289436714 @default.
- W4289436714 hasRelatedWork W3146523624 @default.
- W4289436714 isParatext "false" @default.
- W4289436714 isRetracted "false" @default.
- W4289436714 workType "article" @default.