Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289446598> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4289446598 abstract "The fusion of multispectral and panchromatic images is always dubbed pansharpening. Most of the available deep learning-based pan-sharpening methods sharpen the multispectral images through a one-step scheme, which strongly depends on the reconstruction ability of the network. However, remote sensing images always have large variations, as a result, these one-step methods are vulnerable to the error accumulation and thus incapable of preserving spatial details as well as the spectral information. In this paper, we propose a novel two-step model for pan-sharpening that sharpens the MS image through the progressive compensation of the spatial and spectral information. Firstly, a deep multiscale guided generative adversarial network is used to preliminarily enhance the spatial resolution of the MS image. Starting from the pre-sharpened MS image in the coarse domain, our approach then progressively refines the spatial and spectral residuals over a couple of generative adversarial networks (GANs) that have reverse architectures. The whole model is composed of triple GANs, and based on the specific architecture, a joint compensation loss function is designed to enable the triple GANs to be trained simultaneously. Moreover, the spatial-spectral residual compensation structure proposed in this paper can be extended to other pan-sharpening methods to further enhance their fusion results. Extensive experiments are performed on different datasets and the results demonstrate the effectiveness and efficiency of our proposed method." @default.
- W4289446598 created "2022-08-02" @default.
- W4289446598 creator A5001699296 @default.
- W4289446598 creator A5005426960 @default.
- W4289446598 creator A5028235866 @default.
- W4289446598 creator A5086664284 @default.
- W4289446598 creator A5089584286 @default.
- W4289446598 date "2022-07-28" @default.
- W4289446598 modified "2023-10-12" @default.
- W4289446598 title "PC-GANs: Progressive Compensation Generative Adversarial Networks for Pan-sharpening" @default.
- W4289446598 doi "https://doi.org/10.48550/arxiv.2207.14451" @default.
- W4289446598 hasPublicationYear "2022" @default.
- W4289446598 type Work @default.
- W4289446598 citedByCount "0" @default.
- W4289446598 crossrefType "posted-content" @default.
- W4289446598 hasAuthorship W4289446598A5001699296 @default.
- W4289446598 hasAuthorship W4289446598A5005426960 @default.
- W4289446598 hasAuthorship W4289446598A5028235866 @default.
- W4289446598 hasAuthorship W4289446598A5086664284 @default.
- W4289446598 hasAuthorship W4289446598A5089584286 @default.
- W4289446598 hasBestOaLocation W42894465981 @default.
- W4289446598 hasConcept C107445234 @default.
- W4289446598 hasConcept C11171543 @default.
- W4289446598 hasConcept C11413529 @default.
- W4289446598 hasConcept C115961682 @default.
- W4289446598 hasConcept C153180895 @default.
- W4289446598 hasConcept C154945302 @default.
- W4289446598 hasConcept C155512373 @default.
- W4289446598 hasConcept C15744967 @default.
- W4289446598 hasConcept C173163844 @default.
- W4289446598 hasConcept C205372480 @default.
- W4289446598 hasConcept C2780023022 @default.
- W4289446598 hasConcept C2781137444 @default.
- W4289446598 hasConcept C31972630 @default.
- W4289446598 hasConcept C41008148 @default.
- W4289446598 hasConceptScore W4289446598C107445234 @default.
- W4289446598 hasConceptScore W4289446598C11171543 @default.
- W4289446598 hasConceptScore W4289446598C11413529 @default.
- W4289446598 hasConceptScore W4289446598C115961682 @default.
- W4289446598 hasConceptScore W4289446598C153180895 @default.
- W4289446598 hasConceptScore W4289446598C154945302 @default.
- W4289446598 hasConceptScore W4289446598C155512373 @default.
- W4289446598 hasConceptScore W4289446598C15744967 @default.
- W4289446598 hasConceptScore W4289446598C173163844 @default.
- W4289446598 hasConceptScore W4289446598C205372480 @default.
- W4289446598 hasConceptScore W4289446598C2780023022 @default.
- W4289446598 hasConceptScore W4289446598C2781137444 @default.
- W4289446598 hasConceptScore W4289446598C31972630 @default.
- W4289446598 hasConceptScore W4289446598C41008148 @default.
- W4289446598 hasLocation W42894465981 @default.
- W4289446598 hasOpenAccess W4289446598 @default.
- W4289446598 hasPrimaryLocation W42894465981 @default.
- W4289446598 hasRelatedWork W10920984 @default.
- W4289446598 hasRelatedWork W13025996 @default.
- W4289446598 hasRelatedWork W14664350 @default.
- W4289446598 hasRelatedWork W2382541 @default.
- W4289446598 hasRelatedWork W3460322 @default.
- W4289446598 hasRelatedWork W656488 @default.
- W4289446598 hasRelatedWork W7353742 @default.
- W4289446598 hasRelatedWork W7682646 @default.
- W4289446598 hasRelatedWork W8892619 @default.
- W4289446598 hasRelatedWork W9213682 @default.
- W4289446598 isParatext "false" @default.
- W4289446598 isRetracted "false" @default.
- W4289446598 workType "article" @default.