Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289520074> ?p ?o ?g. }
- W4289520074 abstract "Purpose To accurately assess disease progression after Stereotactic Ablative Radiotherapy (SABR) of early-stage Non-Small Cell Lung Cancer (NSCLC), a combined predictive model based on pre-treatment CT radiomics features and clinical factors was established. Methods This study retrospectively analyzed the data of 96 patients with early-stage NSCLC treated with SABR. Clinical factors included general information (e.g. gender, age, KPS, Charlson score, lung function, smoking status), pre-treatment lesion status (e.g. diameter, location, pathological type, T stage), radiation parameters (biological effective dose, BED), the type of peritumoral radiation-induced lung injury (RILI). Independent risk factors were screened by logistic regression analysis. Radiomics features were extracted from pre-treatment CT. The minimum Redundancy Maximum Relevance (mRMR) and the Least Absolute Shrinkage and Selection Operator (LASSO) were adopted for the dimensionality reduction and feature selection. According to the weight coefficient of the features, the Radscore was calculated, and the radiomics model was constructed. Multiple logistic regression analysis was applied to establish the combined model based on radiomics features and clinical factors. Receiver Operating Characteristic (ROC) curve, DeLong test, Hosmer-Lemeshow test, and Decision Curve Analysis (DCA) were used to evaluate the model’s diagnostic efficiency and clinical practicability. Results With the median follow-up of 59.1 months, 29 patients developed progression and 67 remained good controlled within two years. Among the clinical factors, the type of peritumoral RILI was the only independent risk factor for progression ( P < 0.05). Eleven features were selected from 1781 features to construct a radiomics model. For predicting disease progression after SABR, the Area Under the Curve (AUC) of training and validation cohorts in the radiomics model was 0.88 (95%CI 0.80-0.96) and 0.80 (95%CI 0.62-0.98), and AUC of training and validation cohorts in the combined model were 0.88 (95%CI 0.81-0.96) and 0.81 (95%CI 0.62-0.99). Both the radiomics and the combined models have good prediction efficiency in the training and validation cohorts. Still, DeLong test shows that there is no difference between them. Conclusions Compared with the clinical model, the radiomics model and the combined model can better predict the disease progression of early-stage NSCLC after SABR, which might contribute to individualized follow-up plans and treatment strategies." @default.
- W4289520074 created "2022-08-03" @default.
- W4289520074 creator A5002661071 @default.
- W4289520074 creator A5005461513 @default.
- W4289520074 creator A5006952250 @default.
- W4289520074 creator A5007133338 @default.
- W4289520074 creator A5008691080 @default.
- W4289520074 creator A5009239084 @default.
- W4289520074 creator A5009930587 @default.
- W4289520074 creator A5014388425 @default.
- W4289520074 creator A5017073903 @default.
- W4289520074 creator A5020014720 @default.
- W4289520074 creator A5021928230 @default.
- W4289520074 creator A5025686734 @default.
- W4289520074 creator A5027783039 @default.
- W4289520074 creator A5030045781 @default.
- W4289520074 creator A5031313195 @default.
- W4289520074 creator A5031340090 @default.
- W4289520074 creator A5038730375 @default.
- W4289520074 creator A5043575729 @default.
- W4289520074 creator A5045272733 @default.
- W4289520074 creator A5052103537 @default.
- W4289520074 creator A5053275663 @default.
- W4289520074 creator A5056742440 @default.
- W4289520074 creator A5057163029 @default.
- W4289520074 creator A5065482772 @default.
- W4289520074 creator A5071773097 @default.
- W4289520074 creator A5072605945 @default.
- W4289520074 creator A5075373893 @default.
- W4289520074 creator A5079487216 @default.
- W4289520074 creator A5080456789 @default.
- W4289520074 creator A5081654748 @default.
- W4289520074 creator A5084585443 @default.
- W4289520074 creator A5084891467 @default.
- W4289520074 creator A5087548137 @default.
- W4289520074 creator A5087920560 @default.
- W4289520074 creator A5090934958 @default.
- W4289520074 date "2022-08-02" @default.
- W4289520074 modified "2023-10-15" @default.
- W4289520074 title "A combined predictive model based on radiomics features and clinical factors for disease progression in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy" @default.
- W4289520074 cites W1969730637 @default.
- W4289520074 cites W1973594991 @default.
- W4289520074 cites W1974309609 @default.
- W4289520074 cites W1981905971 @default.
- W4289520074 cites W1983836372 @default.
- W4289520074 cites W1990266033 @default.
- W4289520074 cites W1997495967 @default.
- W4289520074 cites W2036855640 @default.
- W4289520074 cites W2038905276 @default.
- W4289520074 cites W2050496713 @default.
- W4289520074 cites W2091702976 @default.
- W4289520074 cites W2102523936 @default.
- W4289520074 cites W2103634029 @default.
- W4289520074 cites W2106893486 @default.
- W4289520074 cites W2112097252 @default.
- W4289520074 cites W2147729158 @default.
- W4289520074 cites W2149167014 @default.
- W4289520074 cites W2151020778 @default.
- W4289520074 cites W2381854946 @default.
- W4289520074 cites W2587297900 @default.
- W4289520074 cites W2611003136 @default.
- W4289520074 cites W2623144351 @default.
- W4289520074 cites W2763355946 @default.
- W4289520074 cites W2767128594 @default.
- W4289520074 cites W2902915823 @default.
- W4289520074 cites W2906233383 @default.
- W4289520074 cites W2940053266 @default.
- W4289520074 cites W2940212115 @default.
- W4289520074 cites W2942836156 @default.
- W4289520074 cites W2978057349 @default.
- W4289520074 cites W3008565314 @default.
- W4289520074 cites W3096690547 @default.
- W4289520074 cites W3128646645 @default.
- W4289520074 cites W3205817251 @default.
- W4289520074 cites W4200438520 @default.
- W4289520074 cites W4210572930 @default.
- W4289520074 doi "https://doi.org/10.3389/fonc.2022.967360" @default.
- W4289520074 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35982975" @default.
- W4289520074 hasPublicationYear "2022" @default.
- W4289520074 type Work @default.
- W4289520074 citedByCount "3" @default.
- W4289520074 countsByYear W42895200742023 @default.
- W4289520074 crossrefType "journal-article" @default.
- W4289520074 hasAuthorship W4289520074A5002661071 @default.
- W4289520074 hasAuthorship W4289520074A5005461513 @default.
- W4289520074 hasAuthorship W4289520074A5006952250 @default.
- W4289520074 hasAuthorship W4289520074A5007133338 @default.
- W4289520074 hasAuthorship W4289520074A5008691080 @default.
- W4289520074 hasAuthorship W4289520074A5009239084 @default.
- W4289520074 hasAuthorship W4289520074A5009930587 @default.
- W4289520074 hasAuthorship W4289520074A5014388425 @default.
- W4289520074 hasAuthorship W4289520074A5017073903 @default.
- W4289520074 hasAuthorship W4289520074A5020014720 @default.
- W4289520074 hasAuthorship W4289520074A5021928230 @default.
- W4289520074 hasAuthorship W4289520074A5025686734 @default.
- W4289520074 hasAuthorship W4289520074A5027783039 @default.
- W4289520074 hasAuthorship W4289520074A5030045781 @default.
- W4289520074 hasAuthorship W4289520074A5031313195 @default.
- W4289520074 hasAuthorship W4289520074A5031340090 @default.
- W4289520074 hasAuthorship W4289520074A5038730375 @default.