Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289528191> ?p ?o ?g. }
- W4289528191 endingPage "1065" @default.
- W4289528191 startingPage "1051" @default.
- W4289528191 abstract "Overcrowding in emergency department (ED) causes lengthy waiting times, reduces adequate emergency care and increases rate of mortality. Accurate prediction of daily ED visits and allocating resources in advance is one of the solutions to ED overcrowding problem. In this paper, a deep stacked architecture is being proposed and applied to the daily ED visits prediction problem with deep components such as Long Short Term Memory (LSTM), Gated Recurrent Units (GRU) and simple Recurrent Neural Network (RNN). The proposed architecture achieves very high mean accuracy level (94.28–94.59%) in daily ED visits predictions. We have also compared the performance of this architecture with non-stacked deep models and traditional prediction models. The results indicate that deep stacked models outperform (4–7%) the traditional prediction models and other non-stacked deep learning models (1–2%) in our prediction tasks. The application of deep neural network in ED visits prediction is novel as this is one of the first studies to apply a deep stacked architecture in this field. Importantly, our models have achieved better prediction accuracy (in one case comparable) than the state-of-the-art in the literature." @default.
- W4289528191 created "2022-08-03" @default.
- W4289528191 creator A5030967805 @default.
- W4289528191 creator A5049356493 @default.
- W4289528191 creator A5069817633 @default.
- W4289528191 creator A5078110200 @default.
- W4289528191 creator A5087685316 @default.
- W4289528191 creator A5091001832 @default.
- W4289528191 date "2022-07-01" @default.
- W4289528191 modified "2023-09-27" @default.
- W4289528191 title "Predicting hospital emergency department visits with deep learning approaches" @default.
- W4289528191 cites W1227547065 @default.
- W4289528191 cites W1553511670 @default.
- W4289528191 cites W1968193277 @default.
- W4289528191 cites W1970414061 @default.
- W4289528191 cites W1973518279 @default.
- W4289528191 cites W1995608474 @default.
- W4289528191 cites W2003503911 @default.
- W4289528191 cites W2024784120 @default.
- W4289528191 cites W2045553720 @default.
- W4289528191 cites W2060557082 @default.
- W4289528191 cites W2067865996 @default.
- W4289528191 cites W2095049909 @default.
- W4289528191 cites W2161123687 @default.
- W4289528191 cites W2168070936 @default.
- W4289528191 cites W2521154593 @default.
- W4289528191 cites W2523317561 @default.
- W4289528191 cites W2524983454 @default.
- W4289528191 cites W2527679098 @default.
- W4289528191 cites W2529690187 @default.
- W4289528191 cites W2549674895 @default.
- W4289528191 cites W2568818165 @default.
- W4289528191 cites W2605920200 @default.
- W4289528191 cites W2619719375 @default.
- W4289528191 cites W2747599906 @default.
- W4289528191 cites W2766940612 @default.
- W4289528191 cites W2774210733 @default.
- W4289528191 cites W2783190965 @default.
- W4289528191 cites W2804854817 @default.
- W4289528191 cites W2808470495 @default.
- W4289528191 cites W2808662277 @default.
- W4289528191 cites W2884001105 @default.
- W4289528191 cites W2893523375 @default.
- W4289528191 cites W2894821558 @default.
- W4289528191 cites W2903093159 @default.
- W4289528191 cites W2917211387 @default.
- W4289528191 cites W2917675508 @default.
- W4289528191 cites W2919115771 @default.
- W4289528191 cites W2921329522 @default.
- W4289528191 cites W2951728967 @default.
- W4289528191 cites W2961475402 @default.
- W4289528191 cites W2971724044 @default.
- W4289528191 cites W2972391961 @default.
- W4289528191 cites W2982310095 @default.
- W4289528191 cites W2997849943 @default.
- W4289528191 cites W3000500483 @default.
- W4289528191 cites W3002836409 @default.
- W4289528191 cites W3009650506 @default.
- W4289528191 cites W3021264149 @default.
- W4289528191 cites W3024047754 @default.
- W4289528191 cites W3034970121 @default.
- W4289528191 cites W3042100171 @default.
- W4289528191 cites W3048688409 @default.
- W4289528191 cites W3049737176 @default.
- W4289528191 cites W3082613412 @default.
- W4289528191 cites W3089224581 @default.
- W4289528191 cites W3097529015 @default.
- W4289528191 cites W3100789280 @default.
- W4289528191 cites W3102431071 @default.
- W4289528191 cites W3103942004 @default.
- W4289528191 cites W3113599976 @default.
- W4289528191 cites W3146208981 @default.
- W4289528191 cites W3157558703 @default.
- W4289528191 cites W3158225068 @default.
- W4289528191 cites W3159901390 @default.
- W4289528191 cites W3168156287 @default.
- W4289528191 cites W3169189859 @default.
- W4289528191 cites W3171661082 @default.
- W4289528191 cites W3172990688 @default.
- W4289528191 cites W3176921057 @default.
- W4289528191 cites W3199612922 @default.
- W4289528191 cites W4200494085 @default.
- W4289528191 cites W4205393381 @default.
- W4289528191 cites W4205851357 @default.
- W4289528191 cites W4225966287 @default.
- W4289528191 doi "https://doi.org/10.1016/j.bbe.2022.07.008" @default.
- W4289528191 hasPublicationYear "2022" @default.
- W4289528191 type Work @default.
- W4289528191 citedByCount "5" @default.
- W4289528191 countsByYear W42895281912022 @default.
- W4289528191 countsByYear W42895281912023 @default.
- W4289528191 crossrefType "journal-article" @default.
- W4289528191 hasAuthorship W4289528191A5030967805 @default.
- W4289528191 hasAuthorship W4289528191A5049356493 @default.
- W4289528191 hasAuthorship W4289528191A5069817633 @default.
- W4289528191 hasAuthorship W4289528191A5078110200 @default.
- W4289528191 hasAuthorship W4289528191A5087685316 @default.
- W4289528191 hasAuthorship W4289528191A5091001832 @default.