Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289529177> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4289529177 endingPage "5735" @default.
- W4289529177 startingPage "5735" @default.
- W4289529177 abstract "Deep learning techniques have brought substantial performance gains to remote sensing image classification. Among them, convolutional neural networks (CNN) can extract rich spatial and spectral features from hyperspectral images in a short-range region, whereas graph convolutional networks (GCN) can model middle- and long-range spatial relations (or structural features) between samples on their graph structure. These different features make it possible to classify remote sensing images finely. In addition, hyperspectral images and light detection and ranging (LiDAR) images can provide spatial-spectral information and elevation information of targets on the Earth’s surface, respectively. These multi-source remote sensing data can further improve classification accuracy in complex scenes. This paper proposes a classification method for HS and LiDAR data based on a dual-coupled CNN-GCN structure. The model can be divided into a coupled CNN and a coupled GCN. The former employs a weight-sharing mechanism to structurally fuse and simplify the dual CNN models and extracting the spatial features from HS and LiDAR data. The latter first concatenates the HS and LiDAR data to construct a uniform graph structure. Then, the dual GCN models perform structural fusion by sharing the graph structures and weight matrices of some layers to extract their structural information, respectively. Finally, the final hybrid features are fed into a standard classifier for the pixel-level classification task under a unified feature fusion module. Extensive experiments on two real-world hyperspectral and LiDAR data demonstrate the effectiveness and superiority of the proposed method compared to other state-of-the-art baseline methods, such as two-branch CNN and context CNN. In particular, the overall accuracy (99.11%) on Trento achieves the best classification performance reported so far." @default.
- W4289529177 created "2022-08-03" @default.
- W4289529177 creator A5014128597 @default.
- W4289529177 creator A5016852014 @default.
- W4289529177 date "2022-07-31" @default.
- W4289529177 modified "2023-10-05" @default.
- W4289529177 title "Dual-Coupled CNN-GCN-Based Classification for Hyperspectral and LiDAR Data" @default.
- W4289529177 cites W1497089125 @default.
- W4289529177 cites W1965309615 @default.
- W4289529177 cites W1976416886 @default.
- W4289529177 cites W2029992428 @default.
- W4289529177 cites W2039612012 @default.
- W4289529177 cites W2134594501 @default.
- W4289529177 cites W2158548804 @default.
- W4289529177 cites W2548791488 @default.
- W4289529177 cites W2565258258 @default.
- W4289529177 cites W2582672248 @default.
- W4289529177 cites W2606929568 @default.
- W4289529177 cites W2618530766 @default.
- W4289529177 cites W2625894731 @default.
- W4289529177 cites W2744049245 @default.
- W4289529177 cites W2765739551 @default.
- W4289529177 cites W2796684832 @default.
- W4289529177 cites W2890133123 @default.
- W4289529177 cites W2900422233 @default.
- W4289529177 cites W2923136550 @default.
- W4289529177 cites W2965945478 @default.
- W4289529177 cites W2991494819 @default.
- W4289529177 cites W3009883650 @default.
- W4289529177 cites W3028306149 @default.
- W4289529177 cites W3047443805 @default.
- W4289529177 cites W3048631361 @default.
- W4289529177 cites W3081753142 @default.
- W4289529177 cites W3101640299 @default.
- W4289529177 cites W3103753223 @default.
- W4289529177 cites W3216511682 @default.
- W4289529177 cites W4210257598 @default.
- W4289529177 doi "https://doi.org/10.3390/s22155735" @default.
- W4289529177 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35957291" @default.
- W4289529177 hasPublicationYear "2022" @default.
- W4289529177 type Work @default.
- W4289529177 citedByCount "5" @default.
- W4289529177 countsByYear W42895291772023 @default.
- W4289529177 crossrefType "journal-article" @default.
- W4289529177 hasAuthorship W4289529177A5014128597 @default.
- W4289529177 hasAuthorship W4289529177A5016852014 @default.
- W4289529177 hasBestOaLocation W42895291771 @default.
- W4289529177 hasConcept C115051666 @default.
- W4289529177 hasConcept C132525143 @default.
- W4289529177 hasConcept C153180895 @default.
- W4289529177 hasConcept C154945302 @default.
- W4289529177 hasConcept C159078339 @default.
- W4289529177 hasConcept C205649164 @default.
- W4289529177 hasConcept C41008148 @default.
- W4289529177 hasConcept C51399673 @default.
- W4289529177 hasConcept C62649853 @default.
- W4289529177 hasConcept C76155785 @default.
- W4289529177 hasConcept C80444323 @default.
- W4289529177 hasConcept C81363708 @default.
- W4289529177 hasConcept C95623464 @default.
- W4289529177 hasConceptScore W4289529177C115051666 @default.
- W4289529177 hasConceptScore W4289529177C132525143 @default.
- W4289529177 hasConceptScore W4289529177C153180895 @default.
- W4289529177 hasConceptScore W4289529177C154945302 @default.
- W4289529177 hasConceptScore W4289529177C159078339 @default.
- W4289529177 hasConceptScore W4289529177C205649164 @default.
- W4289529177 hasConceptScore W4289529177C41008148 @default.
- W4289529177 hasConceptScore W4289529177C51399673 @default.
- W4289529177 hasConceptScore W4289529177C62649853 @default.
- W4289529177 hasConceptScore W4289529177C76155785 @default.
- W4289529177 hasConceptScore W4289529177C80444323 @default.
- W4289529177 hasConceptScore W4289529177C81363708 @default.
- W4289529177 hasConceptScore W4289529177C95623464 @default.
- W4289529177 hasIssue "15" @default.
- W4289529177 hasLocation W42895291771 @default.
- W4289529177 hasLocation W42895291772 @default.
- W4289529177 hasLocation W42895291773 @default.
- W4289529177 hasOpenAccess W4289529177 @default.
- W4289529177 hasPrimaryLocation W42895291771 @default.
- W4289529177 hasRelatedWork W2030080266 @default.
- W4289529177 hasRelatedWork W2031928588 @default.
- W4289529177 hasRelatedWork W2104177156 @default.
- W4289529177 hasRelatedWork W2140940625 @default.
- W4289529177 hasRelatedWork W2463883205 @default.
- W4289529177 hasRelatedWork W2805400851 @default.
- W4289529177 hasRelatedWork W2900316983 @default.
- W4289529177 hasRelatedWork W3136189581 @default.
- W4289529177 hasRelatedWork W4241000610 @default.
- W4289529177 hasRelatedWork W4385977169 @default.
- W4289529177 hasVolume "22" @default.
- W4289529177 isParatext "false" @default.
- W4289529177 isRetracted "false" @default.
- W4289529177 workType "article" @default.