Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289533744> ?p ?o ?g. }
- W4289533744 abstract "Several popular density-based methods for unsuper-vised and semi-supervised learning tasks, including clustering and classification, can be formulated as instances of a framework that is based on the processing of a minimum spanning tree of the data, where the edge weights correspond to a form of (unnormalized) density estimate w.r.t. a smoothing parameter <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$m_{pts}$</tex> . While density-based methods are considered to be robust w.r.t. <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$m_{pts}$</tex> in the sense that small changes in its value usually lead to slight or no changes in the resulting structure, wider ranges of <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$m_{pts}$</tex> values may lead to different results that a user would like to analyze before choosing the most suitable value for a given data set or application. However, to explore multiple results for a range of <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$m_{pts}$</tex> values, until recently, one had to re-run the density-based method for each value in the range independently, which is computationally inefficient. This paper proposes a new computationally efficient approach to compute multiple density-based minimum spanning trees w.r.t. a set of <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$m_{pts}$</tex> values by leveraging a graph obtained from a single run of the density-based algorithm, without the need for re-runs of the original algorithm. We present theoretical and experimental results that show that our approach overcomes the drawbacks of the previous state-of-the-art, and it is considerably superior in runtime and graph size while being easier to implement. Our experimental evaluation using synthetic and real data shows that our strategy can lead to speed-up factors of hundreds to thousands of times on the computation of density-based minimum spanning trees." @default.
- W4289533744 created "2022-08-03" @default.
- W4289533744 creator A5014723418 @default.
- W4289533744 creator A5051956236 @default.
- W4289533744 creator A5058192966 @default.
- W4289533744 creator A5081258813 @default.
- W4289533744 date "2022-05-01" @default.
- W4289533744 modified "2023-10-16" @default.
- W4289533744 title "CORE-SG: Efficient Computation of Multiple MSTs for Density-Based Methods" @default.
- W4289533744 cites W1493526108 @default.
- W4289533744 cites W151377110 @default.
- W4289533744 cites W1977189366 @default.
- W4289533744 cites W1987111416 @default.
- W4289533744 cites W2047431887 @default.
- W4289533744 cites W2054011861 @default.
- W4289533744 cites W2108598243 @default.
- W4289533744 cites W2132914434 @default.
- W4289533744 cites W2134008243 @default.
- W4289533744 cites W2180566385 @default.
- W4289533744 cites W2243560673 @default.
- W4289533744 cites W2570579522 @default.
- W4289533744 cites W2582164355 @default.
- W4289533744 cites W2879929106 @default.
- W4289533744 cites W2889269664 @default.
- W4289533744 cites W2923023146 @default.
- W4289533744 cites W2963625023 @default.
- W4289533744 cites W2963894773 @default.
- W4289533744 cites W2969093152 @default.
- W4289533744 cites W2969639627 @default.
- W4289533744 cites W2970851599 @default.
- W4289533744 cites W2973402182 @default.
- W4289533744 cites W2989628531 @default.
- W4289533744 cites W2998391271 @default.
- W4289533744 cites W2998752879 @default.
- W4289533744 cites W3020965650 @default.
- W4289533744 cites W3103535303 @default.
- W4289533744 cites W3107842002 @default.
- W4289533744 cites W3126878921 @default.
- W4289533744 cites W3137695810 @default.
- W4289533744 cites W3144750446 @default.
- W4289533744 cites W3169714987 @default.
- W4289533744 cites W4232226726 @default.
- W4289533744 cites W4247105055 @default.
- W4289533744 cites W4285781363 @default.
- W4289533744 doi "https://doi.org/10.1109/icde53745.2022.00076" @default.
- W4289533744 hasPublicationYear "2022" @default.
- W4289533744 type Work @default.
- W4289533744 citedByCount "1" @default.
- W4289533744 crossrefType "proceedings-article" @default.
- W4289533744 hasAuthorship W4289533744A5014723418 @default.
- W4289533744 hasAuthorship W4289533744A5051956236 @default.
- W4289533744 hasAuthorship W4289533744A5058192966 @default.
- W4289533744 hasAuthorship W4289533744A5081258813 @default.
- W4289533744 hasConcept C113174947 @default.
- W4289533744 hasConcept C11413529 @default.
- W4289533744 hasConcept C114614502 @default.
- W4289533744 hasConcept C119857082 @default.
- W4289533744 hasConcept C124101348 @default.
- W4289533744 hasConcept C13743678 @default.
- W4289533744 hasConcept C154945302 @default.
- W4289533744 hasConcept C159985019 @default.
- W4289533744 hasConcept C177264268 @default.
- W4289533744 hasConcept C192562407 @default.
- W4289533744 hasConcept C199360897 @default.
- W4289533744 hasConcept C204323151 @default.
- W4289533744 hasConcept C2164484 @default.
- W4289533744 hasConcept C2776291640 @default.
- W4289533744 hasConcept C31972630 @default.
- W4289533744 hasConcept C33923547 @default.
- W4289533744 hasConcept C3770464 @default.
- W4289533744 hasConcept C41008148 @default.
- W4289533744 hasConcept C45374587 @default.
- W4289533744 hasConcept C73555534 @default.
- W4289533744 hasConcept C76155785 @default.
- W4289533744 hasConcept C80444323 @default.
- W4289533744 hasConceptScore W4289533744C113174947 @default.
- W4289533744 hasConceptScore W4289533744C11413529 @default.
- W4289533744 hasConceptScore W4289533744C114614502 @default.
- W4289533744 hasConceptScore W4289533744C119857082 @default.
- W4289533744 hasConceptScore W4289533744C124101348 @default.
- W4289533744 hasConceptScore W4289533744C13743678 @default.
- W4289533744 hasConceptScore W4289533744C154945302 @default.
- W4289533744 hasConceptScore W4289533744C159985019 @default.
- W4289533744 hasConceptScore W4289533744C177264268 @default.
- W4289533744 hasConceptScore W4289533744C192562407 @default.
- W4289533744 hasConceptScore W4289533744C199360897 @default.
- W4289533744 hasConceptScore W4289533744C204323151 @default.
- W4289533744 hasConceptScore W4289533744C2164484 @default.
- W4289533744 hasConceptScore W4289533744C2776291640 @default.
- W4289533744 hasConceptScore W4289533744C31972630 @default.
- W4289533744 hasConceptScore W4289533744C33923547 @default.
- W4289533744 hasConceptScore W4289533744C3770464 @default.
- W4289533744 hasConceptScore W4289533744C41008148 @default.
- W4289533744 hasConceptScore W4289533744C45374587 @default.
- W4289533744 hasConceptScore W4289533744C73555534 @default.
- W4289533744 hasConceptScore W4289533744C76155785 @default.
- W4289533744 hasConceptScore W4289533744C80444323 @default.
- W4289533744 hasFunder F4320320997 @default.
- W4289533744 hasFunder F4320334593 @default.
- W4289533744 hasLocation W42895337441 @default.