Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289544144> ?p ?o ?g. }
- W4289544144 endingPage "1027" @default.
- W4289544144 startingPage "967" @default.
- W4289544144 abstract "Many causal and structural effects depend on regressions. Examples include policy effects, average derivatives, regression decompositions, average treatment effects, causal mediation, and parameters of economic structural models. The regressions may be high‐dimensional, making machine learning useful. Plugging machine learners into identifying equations can lead to poor inference due to bias from regularization and/or model selection. This paper gives automatic debiasing for linear and nonlinear functions of regressions. The debiasing is automatic in using Lasso and the function of interest without the full form of the bias correction. The debiasing can be applied to any regression learner, including neural nets, random forests, Lasso, boosting, and other high‐dimensional methods. In addition to providing the bias correction, we give standard errors that are robust to misspecification, convergence rates for the bias correction, and primitive conditions for asymptotic inference for estimators of a variety of estimators of structural and causal effects. The automatic debiased machine learning is used to estimate the average treatment effect on the treated for the NSW job training data and to estimate demand elasticities from Nielsen scanner data while allowing preferences to be correlated with prices and income." @default.
- W4289544144 created "2022-08-03" @default.
- W4289544144 creator A5042942366 @default.
- W4289544144 creator A5068383641 @default.
- W4289544144 creator A5074776692 @default.
- W4289544144 date "2022-01-01" @default.
- W4289544144 modified "2023-10-13" @default.
- W4289544144 title "Automatic Debiased Machine Learning of Causal and Structural Effects" @default.
- W4289544144 cites W1460189015 @default.
- W4289544144 cites W1520595697 @default.
- W4289544144 cites W1521950660 @default.
- W4289544144 cites W1540764732 @default.
- W4289544144 cites W1573637202 @default.
- W4289544144 cites W1716904016 @default.
- W4289544144 cites W1730512236 @default.
- W4289544144 cites W1963874316 @default.
- W4289544144 cites W1974906010 @default.
- W4289544144 cites W1990139173 @default.
- W4289544144 cites W2000008805 @default.
- W4289544144 cites W2000471953 @default.
- W4289544144 cites W2010143351 @default.
- W4289544144 cites W2014335114 @default.
- W4289544144 cites W2014373672 @default.
- W4289544144 cites W2017022452 @default.
- W4289544144 cites W2018543390 @default.
- W4289544144 cites W2019473361 @default.
- W4289544144 cites W2023982864 @default.
- W4289544144 cites W2033148801 @default.
- W4289544144 cites W2056636001 @default.
- W4289544144 cites W2069119359 @default.
- W4289544144 cites W2074523758 @default.
- W4289544144 cites W2095945012 @default.
- W4289544144 cites W2097191180 @default.
- W4289544144 cites W2100532505 @default.
- W4289544144 cites W2102204929 @default.
- W4289544144 cites W2115706991 @default.
- W4289544144 cites W2116581043 @default.
- W4289544144 cites W2116739230 @default.
- W4289544144 cites W2120846249 @default.
- W4289544144 cites W2148596757 @default.
- W4289544144 cites W2150291618 @default.
- W4289544144 cites W2152779097 @default.
- W4289544144 cites W2163162137 @default.
- W4289544144 cites W2398799638 @default.
- W4289544144 cites W2567292713 @default.
- W4289544144 cites W2583860259 @default.
- W4289544144 cites W2587888258 @default.
- W4289544144 cites W2761454148 @default.
- W4289544144 cites W2788202717 @default.
- W4289544144 cites W2949148940 @default.
- W4289544144 cites W2952248799 @default.
- W4289544144 cites W2963278901 @default.
- W4289544144 cites W2963958165 @default.
- W4289544144 cites W2964254462 @default.
- W4289544144 cites W2995965953 @default.
- W4289544144 cites W3099550161 @default.
- W4289544144 cites W3102434359 @default.
- W4289544144 cites W3103221895 @default.
- W4289544144 cites W3105930661 @default.
- W4289544144 cites W3122948292 @default.
- W4289544144 cites W3123436326 @default.
- W4289544144 cites W3125407111 @default.
- W4289544144 cites W3126059685 @default.
- W4289544144 cites W3151900206 @default.
- W4289544144 cites W4230252329 @default.
- W4289544144 cites W4239679701 @default.
- W4289544144 cites W4247571494 @default.
- W4289544144 cites W4248240383 @default.
- W4289544144 cites W4250954493 @default.
- W4289544144 cites W4289544144 @default.
- W4289544144 cites W4294541781 @default.
- W4289544144 doi "https://doi.org/10.3982/ecta18515" @default.
- W4289544144 hasPublicationYear "2022" @default.
- W4289544144 type Work @default.
- W4289544144 citedByCount "9" @default.
- W4289544144 countsByYear W42895441442022 @default.
- W4289544144 countsByYear W42895441442023 @default.
- W4289544144 crossrefType "journal-article" @default.
- W4289544144 hasAuthorship W4289544144A5042942366 @default.
- W4289544144 hasAuthorship W4289544144A5068383641 @default.
- W4289544144 hasAuthorship W4289544144A5074776692 @default.
- W4289544144 hasBestOaLocation W42895441442 @default.
- W4289544144 hasConcept C105795698 @default.
- W4289544144 hasConcept C119857082 @default.
- W4289544144 hasConcept C136764020 @default.
- W4289544144 hasConcept C149782125 @default.
- W4289544144 hasConcept C154945302 @default.
- W4289544144 hasConcept C15744967 @default.
- W4289544144 hasConcept C158600405 @default.
- W4289544144 hasConcept C185429906 @default.
- W4289544144 hasConcept C188147891 @default.
- W4289544144 hasConcept C2776135515 @default.
- W4289544144 hasConcept C2776214188 @default.
- W4289544144 hasConcept C2779458634 @default.
- W4289544144 hasConcept C33923547 @default.
- W4289544144 hasConcept C37616216 @default.
- W4289544144 hasConcept C40423286 @default.
- W4289544144 hasConcept C41008148 @default.