Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289593642> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4289593642 abstract "In this article, a study of performing machine learning (ML) based modeling for semiconductor devices has been developed using experimental microwave data. Characterization of gallium arsenide (GaAs) pseudomorphic high electron mobility transistors (pHEMTs) with different gate widths is used as the illustrative example to demonstrate the accuracy and effectiveness of the presented modeling procedure. The tested devices are based on the multifinger layout, in which the total gate width (W) is obtained by multiplying the number of fingers (Nf) and their length (W0). Machines are trained with scattering (S-)parameter measurements up to 65 GHz by using the extreme gradient boosting (XGBoost) algorithm with K-fold cross-validation. Then, the output of the trained machine is utilized by the parameters such as Nf and W0 inside the Auto-encoder (AE) model. In particular, the ML model with AE has a maximum of 99.88% prediction accuracy, despite the uncertainty inherent in the microwave measurements and the unavoidable deviations from the ideal behavior of the analyzed devices." @default.
- W4289593642 created "2022-08-03" @default.
- W4289593642 creator A5035011305 @default.
- W4289593642 creator A5046941832 @default.
- W4289593642 creator A5054524691 @default.
- W4289593642 creator A5071164847 @default.
- W4289593642 date "2022-08-03" @default.
- W4289593642 modified "2023-10-07" @default.
- W4289593642 title "Auto‐encoder based hybrid machine learning model for microwave scaled <scp>GaAs pHEMT</scp> devices" @default.
- W4289593642 cites W1966423045 @default.
- W4289593642 cites W1978843194 @default.
- W4289593642 cites W2001363185 @default.
- W4289593642 cites W2065536990 @default.
- W4289593642 cites W2069925656 @default.
- W4289593642 cites W2112059024 @default.
- W4289593642 cites W2148226578 @default.
- W4289593642 cites W2149298154 @default.
- W4289593642 cites W2157872917 @default.
- W4289593642 cites W2506876909 @default.
- W4289593642 cites W2514173981 @default.
- W4289593642 cites W2515298236 @default.
- W4289593642 cites W2753808411 @default.
- W4289593642 cites W2888876874 @default.
- W4289593642 cites W2965256140 @default.
- W4289593642 cites W2981375464 @default.
- W4289593642 cites W2982698509 @default.
- W4289593642 cites W2998581876 @default.
- W4289593642 cites W3047876458 @default.
- W4289593642 cites W3105658587 @default.
- W4289593642 cites W3154016292 @default.
- W4289593642 cites W3159654053 @default.
- W4289593642 cites W3159794699 @default.
- W4289593642 doi "https://doi.org/10.1002/mmce.23339" @default.
- W4289593642 hasPublicationYear "2022" @default.
- W4289593642 type Work @default.
- W4289593642 citedByCount "2" @default.
- W4289593642 countsByYear W42895936422022 @default.
- W4289593642 countsByYear W42895936422023 @default.
- W4289593642 crossrefType "journal-article" @default.
- W4289593642 hasAuthorship W4289593642A5035011305 @default.
- W4289593642 hasAuthorship W4289593642A5046941832 @default.
- W4289593642 hasAuthorship W4289593642A5054524691 @default.
- W4289593642 hasAuthorship W4289593642A5071164847 @default.
- W4289593642 hasConcept C111919701 @default.
- W4289593642 hasConcept C118505674 @default.
- W4289593642 hasConcept C119599485 @default.
- W4289593642 hasConcept C127413603 @default.
- W4289593642 hasConcept C154945302 @default.
- W4289593642 hasConcept C162057924 @default.
- W4289593642 hasConcept C165801399 @default.
- W4289593642 hasConcept C169258074 @default.
- W4289593642 hasConcept C172385210 @default.
- W4289593642 hasConcept C192562407 @default.
- W4289593642 hasConcept C195266298 @default.
- W4289593642 hasConcept C24326235 @default.
- W4289593642 hasConcept C41008148 @default.
- W4289593642 hasConcept C44838205 @default.
- W4289593642 hasConcept C49040817 @default.
- W4289593642 hasConcept C510052550 @default.
- W4289593642 hasConcept C70153297 @default.
- W4289593642 hasConcept C76155785 @default.
- W4289593642 hasConceptScore W4289593642C111919701 @default.
- W4289593642 hasConceptScore W4289593642C118505674 @default.
- W4289593642 hasConceptScore W4289593642C119599485 @default.
- W4289593642 hasConceptScore W4289593642C127413603 @default.
- W4289593642 hasConceptScore W4289593642C154945302 @default.
- W4289593642 hasConceptScore W4289593642C162057924 @default.
- W4289593642 hasConceptScore W4289593642C165801399 @default.
- W4289593642 hasConceptScore W4289593642C169258074 @default.
- W4289593642 hasConceptScore W4289593642C172385210 @default.
- W4289593642 hasConceptScore W4289593642C192562407 @default.
- W4289593642 hasConceptScore W4289593642C195266298 @default.
- W4289593642 hasConceptScore W4289593642C24326235 @default.
- W4289593642 hasConceptScore W4289593642C41008148 @default.
- W4289593642 hasConceptScore W4289593642C44838205 @default.
- W4289593642 hasConceptScore W4289593642C49040817 @default.
- W4289593642 hasConceptScore W4289593642C510052550 @default.
- W4289593642 hasConceptScore W4289593642C70153297 @default.
- W4289593642 hasConceptScore W4289593642C76155785 @default.
- W4289593642 hasFunder F4320320719 @default.
- W4289593642 hasIssue "11" @default.
- W4289593642 hasLocation W42895936421 @default.
- W4289593642 hasOpenAccess W4289593642 @default.
- W4289593642 hasPrimaryLocation W42895936421 @default.
- W4289593642 hasRelatedWork W1830949216 @default.
- W4289593642 hasRelatedWork W2000670116 @default.
- W4289593642 hasRelatedWork W2069983795 @default.
- W4289593642 hasRelatedWork W2124601276 @default.
- W4289593642 hasRelatedWork W2141478065 @default.
- W4289593642 hasRelatedWork W2533738239 @default.
- W4289593642 hasRelatedWork W2535244644 @default.
- W4289593642 hasRelatedWork W2804067627 @default.
- W4289593642 hasRelatedWork W4289593642 @default.
- W4289593642 hasRelatedWork W2102029559 @default.
- W4289593642 hasVolume "32" @default.
- W4289593642 isParatext "false" @default.
- W4289593642 isRetracted "false" @default.
- W4289593642 workType "article" @default.