Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289656111> ?p ?o ?g. }
- W4289656111 endingPage "81763" @default.
- W4289656111 startingPage "81741" @default.
- W4289656111 abstract "Automatic Leukemia or blood cancer detection is a challenging job and is very much required in healthcare centers. It has a significant role in early diagnosis and treatment planning. Leukemia is a hematological disorder that starts from the bone marrow and affects white blood cells (WBCs). Microscopic analysis of WBCs is a preferred approach for an early detection of Leukemia since it is cost-effective and less painful. Very few literature reviews have been done to demonstrate a comprehensive analysis of deep and machine learning-based Acute Lymphoblastic Leukemia (ALL) detection. This article presents a systematic review of the recent advancements in this knowledge domain. Here, various artificial intelligence-based ALL detection approaches are analyzed in a systematic manner with merits and demits. The review of these schemes is conducted in a structured manner. For this purpose, segmentation schemes are broadly categorized into signal and image processing-based techniques, conventional machine learning-based techniques, and deep learning-based techniques. Conventional machine learning-based ALL classification approaches are categorized into supervised and unsupervised machine learning is presented. In addition, deep learning-based classification methods are categorized into Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and the Autoencoder. Then, CNN-based classification schemes are further categorized into conventional CNN, transfer learning, and other advancements in CNN. A brief discussion of these schemes and their importance in ALL classification are also presented. Moreover, a critical analysis is performed to present a clear idea about the recent research in this field. Finally, various challenging issues and future scopes are discussed that may assist readers in formulating new research problems in this domain." @default.
- W4289656111 created "2022-08-03" @default.
- W4289656111 creator A5003123065 @default.
- W4289656111 creator A5037663112 @default.
- W4289656111 creator A5071362727 @default.
- W4289656111 creator A5072703440 @default.
- W4289656111 creator A5087542455 @default.
- W4289656111 date "2022-01-01" @default.
- W4289656111 modified "2023-10-07" @default.
- W4289656111 title "A Systematic Review on Recent Advancements in Deep and Machine Learning Based Detection and Classification of Acute Lymphoblastic Leukemia" @default.
- W4289656111 cites W1608047833 @default.
- W4289656111 cites W1722290647 @default.
- W4289656111 cites W1780185704 @default.
- W4289656111 cites W1973880112 @default.
- W4289656111 cites W1977556410 @default.
- W4289656111 cites W1979393293 @default.
- W4289656111 cites W1985809919 @default.
- W4289656111 cites W1995450389 @default.
- W4289656111 cites W2000897614 @default.
- W4289656111 cites W2002903570 @default.
- W4289656111 cites W2011503872 @default.
- W4289656111 cites W2012442592 @default.
- W4289656111 cites W2015478032 @default.
- W4289656111 cites W2016174979 @default.
- W4289656111 cites W2024001381 @default.
- W4289656111 cites W2044465660 @default.
- W4289656111 cites W2050829396 @default.
- W4289656111 cites W2056052206 @default.
- W4289656111 cites W2057747179 @default.
- W4289656111 cites W2060706129 @default.
- W4289656111 cites W2064675550 @default.
- W4289656111 cites W2076426515 @default.
- W4289656111 cites W2077915271 @default.
- W4289656111 cites W2080860745 @default.
- W4289656111 cites W2083620785 @default.
- W4289656111 cites W2089468765 @default.
- W4289656111 cites W2096761600 @default.
- W4289656111 cites W2097117768 @default.
- W4289656111 cites W2102919172 @default.
- W4289656111 cites W2103535650 @default.
- W4289656111 cites W2104095591 @default.
- W4289656111 cites W2112796928 @default.
- W4289656111 cites W2119044579 @default.
- W4289656111 cites W2122111042 @default.
- W4289656111 cites W2122198816 @default.
- W4289656111 cites W2125027820 @default.
- W4289656111 cites W2125283600 @default.
- W4289656111 cites W2126885794 @default.
- W4289656111 cites W2131774270 @default.
- W4289656111 cites W2132290926 @default.
- W4289656111 cites W2140405352 @default.
- W4289656111 cites W2141278204 @default.
- W4289656111 cites W2144854846 @default.
- W4289656111 cites W2155632266 @default.
- W4289656111 cites W2155893237 @default.
- W4289656111 cites W2156781020 @default.
- W4289656111 cites W2161349318 @default.
- W4289656111 cites W2161950489 @default.
- W4289656111 cites W2163352848 @default.
- W4289656111 cites W2169384781 @default.
- W4289656111 cites W2170249894 @default.
- W4289656111 cites W2194775991 @default.
- W4289656111 cites W2207171145 @default.
- W4289656111 cites W2213155123 @default.
- W4289656111 cites W2484322924 @default.
- W4289656111 cites W2531409750 @default.
- W4289656111 cites W2541469886 @default.
- W4289656111 cites W2551596518 @default.
- W4289656111 cites W2563823404 @default.
- W4289656111 cites W2567699853 @default.
- W4289656111 cites W2570343428 @default.
- W4289656111 cites W2578827697 @default.
- W4289656111 cites W2586834759 @default.
- W4289656111 cites W2592905743 @default.
- W4289656111 cites W2593687058 @default.
- W4289656111 cites W2595067526 @default.
- W4289656111 cites W2725970815 @default.
- W4289656111 cites W2732619842 @default.
- W4289656111 cites W2734346579 @default.
- W4289656111 cites W2736844740 @default.
- W4289656111 cites W2753825789 @default.
- W4289656111 cites W2765934242 @default.
- W4289656111 cites W2768086057 @default.
- W4289656111 cites W2768956845 @default.
- W4289656111 cites W2770156338 @default.
- W4289656111 cites W2783733999 @default.
- W4289656111 cites W2786454292 @default.
- W4289656111 cites W2788712375 @default.
- W4289656111 cites W2798219973 @default.
- W4289656111 cites W2801148351 @default.
- W4289656111 cites W2801624633 @default.
- W4289656111 cites W2886710006 @default.
- W4289656111 cites W2890671308 @default.
- W4289656111 cites W2893154092 @default.
- W4289656111 cites W2903581626 @default.
- W4289656111 cites W2906155095 @default.
- W4289656111 cites W2911964244 @default.
- W4289656111 cites W2917675508 @default.