Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289656146> ?p ?o ?g. }
- W4289656146 endingPage "25372" @default.
- W4289656146 startingPage "25363" @default.
- W4289656146 abstract "With the popularity and development of Internet of Things (IoT) technology, human activity recognition using IoT devices such as wearable sensors can be implemented for various applications. Due to the complexity of activity recognition, multiple homogeneous or heterogeneous sensors are used to obtain excessive information in most wearable activity recognition systems. However, the increased number of sensors and the way of multichannel signal data bring huge challenges to human activity recognition tasks. How to select suitable sensor channels to balance the computational complexity and recognition accuracy has become a major issue. In this article, we extend the sparse group Lasso mechanism to human activity recognition tasks and propose a hybrid attention-based multi-sensor pruning and feature selection deep neural network, called HAP-DNN. This architecture is able to further perform feature selection on the basis of sensor pruning. HAP-DNN consists of three detachable modules: 1) a feature compression & reconstruction module for sensor feature information fusion and restoration; 2) a feature weight calculation module for calculating sensor channel weights and feature weights; and 3) a learning module for classification, which can be regarded as a filter feature selection method. Four public activity recognition data sets are used to verify our proposed architecture, and the experimental results show that HAP-DNN achieves the best classification performance with the least number of retained feature channels." @default.
- W4289656146 created "2022-08-03" @default.
- W4289656146 creator A5022841511 @default.
- W4289656146 creator A5039215131 @default.
- W4289656146 creator A5041000906 @default.
- W4289656146 creator A5048421704 @default.
- W4289656146 date "2022-12-15" @default.
- W4289656146 modified "2023-10-11" @default.
- W4289656146 title "A Hybrid Attention-Based Deep Neural Network for Simultaneous Multi-Sensor Pruning and Human Activity Recognition" @default.
- W4289656146 cites W1598741436 @default.
- W4289656146 cites W1661405579 @default.
- W4289656146 cites W1987371344 @default.
- W4289656146 cites W1989496527 @default.
- W4289656146 cites W2073401630 @default.
- W4289656146 cites W2096680959 @default.
- W4289656146 cites W2116436990 @default.
- W4289656146 cites W2135046866 @default.
- W4289656146 cites W2138019504 @default.
- W4289656146 cites W2144348409 @default.
- W4289656146 cites W2313683095 @default.
- W4289656146 cites W2460144244 @default.
- W4289656146 cites W2500506338 @default.
- W4289656146 cites W2526868004 @default.
- W4289656146 cites W2744088620 @default.
- W4289656146 cites W2801018742 @default.
- W4289656146 cites W2903659352 @default.
- W4289656146 cites W2915815650 @default.
- W4289656146 cites W2945490067 @default.
- W4289656146 cites W2949754992 @default.
- W4289656146 cites W2963035248 @default.
- W4289656146 cites W2964784810 @default.
- W4289656146 cites W2972317743 @default.
- W4289656146 cites W2976991423 @default.
- W4289656146 cites W2997624179 @default.
- W4289656146 cites W3006654525 @default.
- W4289656146 cites W3016239290 @default.
- W4289656146 cites W3028031870 @default.
- W4289656146 cites W3103233276 @default.
- W4289656146 cites W3124139391 @default.
- W4289656146 cites W3163470680 @default.
- W4289656146 doi "https://doi.org/10.1109/jiot.2022.3196170" @default.
- W4289656146 hasPublicationYear "2022" @default.
- W4289656146 type Work @default.
- W4289656146 citedByCount "4" @default.
- W4289656146 countsByYear W42896561462023 @default.
- W4289656146 crossrefType "journal-article" @default.
- W4289656146 hasAuthorship W4289656146A5022841511 @default.
- W4289656146 hasAuthorship W4289656146A5039215131 @default.
- W4289656146 hasAuthorship W4289656146A5041000906 @default.
- W4289656146 hasAuthorship W4289656146A5048421704 @default.
- W4289656146 hasConcept C108010975 @default.
- W4289656146 hasConcept C119857082 @default.
- W4289656146 hasConcept C121687571 @default.
- W4289656146 hasConcept C138885662 @default.
- W4289656146 hasConcept C148483581 @default.
- W4289656146 hasConcept C149635348 @default.
- W4289656146 hasConcept C150594956 @default.
- W4289656146 hasConcept C153180895 @default.
- W4289656146 hasConcept C154945302 @default.
- W4289656146 hasConcept C24590314 @default.
- W4289656146 hasConcept C2776401178 @default.
- W4289656146 hasConcept C31258907 @default.
- W4289656146 hasConcept C41008148 @default.
- W4289656146 hasConcept C41895202 @default.
- W4289656146 hasConcept C50644808 @default.
- W4289656146 hasConcept C52622490 @default.
- W4289656146 hasConcept C6557445 @default.
- W4289656146 hasConcept C86803240 @default.
- W4289656146 hasConceptScore W4289656146C108010975 @default.
- W4289656146 hasConceptScore W4289656146C119857082 @default.
- W4289656146 hasConceptScore W4289656146C121687571 @default.
- W4289656146 hasConceptScore W4289656146C138885662 @default.
- W4289656146 hasConceptScore W4289656146C148483581 @default.
- W4289656146 hasConceptScore W4289656146C149635348 @default.
- W4289656146 hasConceptScore W4289656146C150594956 @default.
- W4289656146 hasConceptScore W4289656146C153180895 @default.
- W4289656146 hasConceptScore W4289656146C154945302 @default.
- W4289656146 hasConceptScore W4289656146C24590314 @default.
- W4289656146 hasConceptScore W4289656146C2776401178 @default.
- W4289656146 hasConceptScore W4289656146C31258907 @default.
- W4289656146 hasConceptScore W4289656146C41008148 @default.
- W4289656146 hasConceptScore W4289656146C41895202 @default.
- W4289656146 hasConceptScore W4289656146C50644808 @default.
- W4289656146 hasConceptScore W4289656146C52622490 @default.
- W4289656146 hasConceptScore W4289656146C6557445 @default.
- W4289656146 hasConceptScore W4289656146C86803240 @default.
- W4289656146 hasFunder F4320321001 @default.
- W4289656146 hasFunder F4320329791 @default.
- W4289656146 hasFunder F4320335787 @default.
- W4289656146 hasIssue "24" @default.
- W4289656146 hasLocation W42896561461 @default.
- W4289656146 hasOpenAccess W4289656146 @default.
- W4289656146 hasPrimaryLocation W42896561461 @default.
- W4289656146 hasRelatedWork W2016461833 @default.
- W4289656146 hasRelatedWork W2022684485 @default.
- W4289656146 hasRelatedWork W2314710578 @default.
- W4289656146 hasRelatedWork W2382607599 @default.
- W4289656146 hasRelatedWork W2515280043 @default.