Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289656310> ?p ?o ?g. }
- W4289656310 endingPage "25362" @default.
- W4289656310 startingPage "25350" @default.
- W4289656310 abstract "Air pollution monitoring platforms play a very important role in preventing and mitigating the effects of pollution. Recent advances in the field of graph signal processing have made it possible to describe and analyze air pollution monitoring networks using graphs. One of the main applications is the reconstruction of the measured signal in a graph using a subset of sensors. Reconstructing the signal using information from sensor neighbors can help improve the quality of network data, examples are filling in missing data with correlated neighboring nodes, or correcting a drifting sensor with neighboring sensors that are more accurate. This paper compares the use of various types of graph signal reconstruction methods applied to real data sets of Spanish air pollution reference stations. The methods considered are Laplacian interpolation, graph signal processing low-pass based graph signal reconstruction, and kernel-based graph signal reconstruction, and are compared on actual air pollution data sets measuring O3, NO2, and PM10. The ability of the methods to reconstruct the signal of a pollutant is shown, as well as the computational cost of this reconstruction. The results indicate the superiority of methods based on kernel-based graph signal reconstruction, as well as the difficulties of the methods to scale in an air pollution monitoring network with a large number of low-cost sensors. However, we show that scalability can be overcome with simple methods, such as partitioning the network using a clustering algorithm." @default.
- W4289656310 created "2022-08-03" @default.
- W4289656310 creator A5020751366 @default.
- W4289656310 creator A5026709211 @default.
- W4289656310 creator A5049368144 @default.
- W4289656310 date "2022-12-15" @default.
- W4289656310 modified "2023-09-24" @default.
- W4289656310 title "Graph Signal Reconstruction Techniques for IoT Air Pollution Monitoring Platforms" @default.
- W4289656310 cites W2035763857 @default.
- W4289656310 cites W2068743750 @default.
- W4289656310 cites W2126523478 @default.
- W4289656310 cites W2403959208 @default.
- W4289656310 cites W2404087539 @default.
- W4289656310 cites W2731171009 @default.
- W4289656310 cites W2734408317 @default.
- W4289656310 cites W2740138510 @default.
- W4289656310 cites W2784031884 @default.
- W4289656310 cites W2792212560 @default.
- W4289656310 cites W2880156893 @default.
- W4289656310 cites W2883162867 @default.
- W4289656310 cites W2886310760 @default.
- W4289656310 cites W2894263072 @default.
- W4289656310 cites W2911884683 @default.
- W4289656310 cites W2946907529 @default.
- W4289656310 cites W2963384510 @default.
- W4289656310 cites W2963486826 @default.
- W4289656310 cites W2964012239 @default.
- W4289656310 cites W2972680634 @default.
- W4289656310 cites W2973369637 @default.
- W4289656310 cites W2973458636 @default.
- W4289656310 cites W2981470846 @default.
- W4289656310 cites W2992627410 @default.
- W4289656310 cites W2994097903 @default.
- W4289656310 cites W2995699880 @default.
- W4289656310 cites W2997181641 @default.
- W4289656310 cites W2998741637 @default.
- W4289656310 cites W3005726785 @default.
- W4289656310 cites W3030576976 @default.
- W4289656310 cites W3033403115 @default.
- W4289656310 cites W3044245274 @default.
- W4289656310 cites W3108376771 @default.
- W4289656310 cites W3139363008 @default.
- W4289656310 cites W3160248716 @default.
- W4289656310 cites W2735555001 @default.
- W4289656310 doi "https://doi.org/10.1109/jiot.2022.3196154" @default.
- W4289656310 hasPublicationYear "2022" @default.
- W4289656310 type Work @default.
- W4289656310 citedByCount "1" @default.
- W4289656310 countsByYear W42896563102022 @default.
- W4289656310 crossrefType "journal-article" @default.
- W4289656310 hasAuthorship W4289656310A5020751366 @default.
- W4289656310 hasAuthorship W4289656310A5026709211 @default.
- W4289656310 hasAuthorship W4289656310A5049368144 @default.
- W4289656310 hasBestOaLocation W42896563102 @default.
- W4289656310 hasConcept C104267543 @default.
- W4289656310 hasConcept C124101348 @default.
- W4289656310 hasConcept C132525143 @default.
- W4289656310 hasConcept C24590314 @default.
- W4289656310 hasConcept C31258907 @default.
- W4289656310 hasConcept C41008148 @default.
- W4289656310 hasConcept C48044578 @default.
- W4289656310 hasConcept C70958404 @default.
- W4289656310 hasConcept C77088390 @default.
- W4289656310 hasConcept C79403827 @default.
- W4289656310 hasConcept C80444323 @default.
- W4289656310 hasConcept C84462506 @default.
- W4289656310 hasConcept C9390403 @default.
- W4289656310 hasConceptScore W4289656310C104267543 @default.
- W4289656310 hasConceptScore W4289656310C124101348 @default.
- W4289656310 hasConceptScore W4289656310C132525143 @default.
- W4289656310 hasConceptScore W4289656310C24590314 @default.
- W4289656310 hasConceptScore W4289656310C31258907 @default.
- W4289656310 hasConceptScore W4289656310C41008148 @default.
- W4289656310 hasConceptScore W4289656310C48044578 @default.
- W4289656310 hasConceptScore W4289656310C70958404 @default.
- W4289656310 hasConceptScore W4289656310C77088390 @default.
- W4289656310 hasConceptScore W4289656310C79403827 @default.
- W4289656310 hasConceptScore W4289656310C80444323 @default.
- W4289656310 hasConceptScore W4289656310C84462506 @default.
- W4289656310 hasConceptScore W4289656310C9390403 @default.
- W4289656310 hasFunder F4320321505 @default.
- W4289656310 hasIssue "24" @default.
- W4289656310 hasLocation W42896563101 @default.
- W4289656310 hasLocation W42896563102 @default.
- W4289656310 hasOpenAccess W4289656310 @default.
- W4289656310 hasPrimaryLocation W42896563101 @default.
- W4289656310 hasRelatedWork W1527726406 @default.
- W4289656310 hasRelatedWork W1579732497 @default.
- W4289656310 hasRelatedWork W1593656292 @default.
- W4289656310 hasRelatedWork W2081742066 @default.
- W4289656310 hasRelatedWork W2136398110 @default.
- W4289656310 hasRelatedWork W2147644205 @default.
- W4289656310 hasRelatedWork W2364921833 @default.
- W4289656310 hasRelatedWork W2388030554 @default.
- W4289656310 hasRelatedWork W2508132597 @default.
- W4289656310 hasRelatedWork W2560600053 @default.
- W4289656310 hasVolume "9" @default.
- W4289656310 isParatext "false" @default.