Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289702901> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4289702901 abstract "Inspired by the success of deep learning applications on restoration of low-dose and sparse CT images, we propose a novel method to reconstruct high-quality 4D cone-beam CT (4DCBCT) images from sparse datasets. Our approach combines the idea of 'bin-sharing' with a deep convolutional neural network (CNN) model. More specifically, for each respiratory bin, an initial estimate of the patient sinogram is obtained by taking projections from adjacent bins and performing linear interpolation. Subsequently, the estimated sinogram is propagated through a CNN that predicts a full, high-quality sinogram. Lastly, the predicted sinogram is reconstructed with traditional CBCT algorithms such as the Feldkamp, Davis and Kress (FDK) method. The CNN model, which we referred to as the Sino-Net, was trained under different loss functions. We assessed the performance of the proposed method in terms of image quality metrics (mean square error, mean absolute error, peak signal-to-noise ratio and structural similarity) and tumor motion accuracy (tumor centroid deviation with respect to the ground truth). Overall, the presented prototype model was able to substantially improve the quality of 4DCBCT images, removing most of the streak artifacts and decreasing the noise with respect to the standard FDK reconstructions. The tumor centroid deviations with respect to the ground truth predicted by our method were approximately 0.5 mm, on average (maximum deviation was approximately 2 mm). These preliminary results are promising and encourage us to further investigate the performance of our model under more challenging imaging conditions and compare it against the state-of-the-art CBCT reconstruction algorithms." @default.
- W4289702901 created "2022-08-04" @default.
- W4289702901 creator A5000602979 @default.
- W4289702901 creator A5007564876 @default.
- W4289702901 date "2018-08-10" @default.
- W4289702901 modified "2023-09-26" @default.
- W4289702901 title "Learning from our neighbours: a novel approach on sinogram completion using bin-sharing and deep learning to reconstruct high quality 4DCBCT" @default.
- W4289702901 doi "https://doi.org/10.48550/arxiv.1808.03693" @default.
- W4289702901 hasPublicationYear "2018" @default.
- W4289702901 type Work @default.
- W4289702901 citedByCount "0" @default.
- W4289702901 crossrefType "posted-content" @default.
- W4289702901 hasAuthorship W4289702901A5000602979 @default.
- W4289702901 hasAuthorship W4289702901A5007564876 @default.
- W4289702901 hasBestOaLocation W42897029011 @default.
- W4289702901 hasConcept C103278499 @default.
- W4289702901 hasConcept C105795698 @default.
- W4289702901 hasConcept C108583219 @default.
- W4289702901 hasConcept C11413529 @default.
- W4289702901 hasConcept C115961682 @default.
- W4289702901 hasConcept C120665830 @default.
- W4289702901 hasConcept C121332964 @default.
- W4289702901 hasConcept C137800194 @default.
- W4289702901 hasConcept C139945424 @default.
- W4289702901 hasConcept C141379421 @default.
- W4289702901 hasConcept C146599234 @default.
- W4289702901 hasConcept C146849305 @default.
- W4289702901 hasConcept C153180895 @default.
- W4289702901 hasConcept C154945302 @default.
- W4289702901 hasConcept C156273044 @default.
- W4289702901 hasConcept C31972630 @default.
- W4289702901 hasConcept C33923547 @default.
- W4289702901 hasConcept C41008148 @default.
- W4289702901 hasConcept C55020928 @default.
- W4289702901 hasConcept C65185188 @default.
- W4289702901 hasConcept C81363708 @default.
- W4289702901 hasConcept C99498987 @default.
- W4289702901 hasConceptScore W4289702901C103278499 @default.
- W4289702901 hasConceptScore W4289702901C105795698 @default.
- W4289702901 hasConceptScore W4289702901C108583219 @default.
- W4289702901 hasConceptScore W4289702901C11413529 @default.
- W4289702901 hasConceptScore W4289702901C115961682 @default.
- W4289702901 hasConceptScore W4289702901C120665830 @default.
- W4289702901 hasConceptScore W4289702901C121332964 @default.
- W4289702901 hasConceptScore W4289702901C137800194 @default.
- W4289702901 hasConceptScore W4289702901C139945424 @default.
- W4289702901 hasConceptScore W4289702901C141379421 @default.
- W4289702901 hasConceptScore W4289702901C146599234 @default.
- W4289702901 hasConceptScore W4289702901C146849305 @default.
- W4289702901 hasConceptScore W4289702901C153180895 @default.
- W4289702901 hasConceptScore W4289702901C154945302 @default.
- W4289702901 hasConceptScore W4289702901C156273044 @default.
- W4289702901 hasConceptScore W4289702901C31972630 @default.
- W4289702901 hasConceptScore W4289702901C33923547 @default.
- W4289702901 hasConceptScore W4289702901C41008148 @default.
- W4289702901 hasConceptScore W4289702901C55020928 @default.
- W4289702901 hasConceptScore W4289702901C65185188 @default.
- W4289702901 hasConceptScore W4289702901C81363708 @default.
- W4289702901 hasConceptScore W4289702901C99498987 @default.
- W4289702901 hasLocation W42897029011 @default.
- W4289702901 hasOpenAccess W4289702901 @default.
- W4289702901 hasPrimaryLocation W42897029011 @default.
- W4289702901 hasRelatedWork W2732542196 @default.
- W4289702901 hasRelatedWork W2738221750 @default.
- W4289702901 hasRelatedWork W2751100193 @default.
- W4289702901 hasRelatedWork W2774444957 @default.
- W4289702901 hasRelatedWork W2898099302 @default.
- W4289702901 hasRelatedWork W3081756191 @default.
- W4289702901 hasRelatedWork W3128305826 @default.
- W4289702901 hasRelatedWork W3156786002 @default.
- W4289702901 hasRelatedWork W3160889789 @default.
- W4289702901 hasRelatedWork W564581980 @default.
- W4289702901 isParatext "false" @default.
- W4289702901 isRetracted "false" @default.
- W4289702901 workType "article" @default.