Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289702905> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4289702905 abstract "The widespread utilisation of grid-integrated wind electricity necessitates accurate and reliable wind speed forecasting to ensure stable grid and quality power. Machine learning algorithm based wind speed forecasting models are getting increased attention in the literature owing to its superior ability to learn by effectively capturing the changing patterns from the data. Most of the reported wind forecasting models built on machine learning algorithms are location specific and tested against data adjacent to the training data. In this work, we develop the machine learning based wind speed forecasting models and analyse their performance when applied to data from different cross- locations up to a year ahead. Two distinct machine learning models based on Support Vector Machine (SVM) and Random Forest (RF) algorithms have been developed and tested separately for a relatively large geographical area. The results of analysis of 1-hour forecasts obtained at various cross-locations and points of time up to a year ahead show 80% of predictions within a Root Mean Square Error (RMSE) of 1.5 m/s, 95% within 2.5 m/s and 98% within an RMSEof 3.5 m/s. The 75% of 2-hour predictions are within RMSE of 1.5 m/s, 16-hour predictions within RMSE of 2.5 m / s and 48-hour predictions within RMSE of 3.5 m/s. When applied to thesame location of training data, the models generate reliable forecasts for periods up to 22 hours, with the added advantage that the models perform consistently throughout the year ahead horizon, independent of the lead time from the training data. The output of the analysis is highly promising to the wind energy industry in wind forecasting for locations where historical wind speed data are not available for model building and training." @default.
- W4289702905 created "2022-08-04" @default.
- W4289702905 creator A5032515371 @default.
- W4289702905 creator A5080853111 @default.
- W4289702905 creator A5088318028 @default.
- W4289702905 date "2018-08-10" @default.
- W4289702905 modified "2023-09-26" @default.
- W4289702905 title "Cross-location wind speed forecasting for wind energy applications using machine learning based models" @default.
- W4289702905 doi "https://doi.org/10.48550/arxiv.1808.03480" @default.
- W4289702905 hasPublicationYear "2018" @default.
- W4289702905 type Work @default.
- W4289702905 citedByCount "0" @default.
- W4289702905 crossrefType "posted-content" @default.
- W4289702905 hasAuthorship W4289702905A5032515371 @default.
- W4289702905 hasAuthorship W4289702905A5080853111 @default.
- W4289702905 hasAuthorship W4289702905A5088318028 @default.
- W4289702905 hasBestOaLocation W42897029051 @default.
- W4289702905 hasConcept C105795698 @default.
- W4289702905 hasConcept C119599485 @default.
- W4289702905 hasConcept C119857082 @default.
- W4289702905 hasConcept C12267149 @default.
- W4289702905 hasConcept C127413603 @default.
- W4289702905 hasConcept C139945424 @default.
- W4289702905 hasConcept C153294291 @default.
- W4289702905 hasConcept C154945302 @default.
- W4289702905 hasConcept C161067210 @default.
- W4289702905 hasConcept C169258074 @default.
- W4289702905 hasConcept C187691185 @default.
- W4289702905 hasConcept C205649164 @default.
- W4289702905 hasConcept C2524010 @default.
- W4289702905 hasConcept C27181475 @default.
- W4289702905 hasConcept C33923547 @default.
- W4289702905 hasConcept C41008148 @default.
- W4289702905 hasConcept C78600449 @default.
- W4289702905 hasConceptScore W4289702905C105795698 @default.
- W4289702905 hasConceptScore W4289702905C119599485 @default.
- W4289702905 hasConceptScore W4289702905C119857082 @default.
- W4289702905 hasConceptScore W4289702905C12267149 @default.
- W4289702905 hasConceptScore W4289702905C127413603 @default.
- W4289702905 hasConceptScore W4289702905C139945424 @default.
- W4289702905 hasConceptScore W4289702905C153294291 @default.
- W4289702905 hasConceptScore W4289702905C154945302 @default.
- W4289702905 hasConceptScore W4289702905C161067210 @default.
- W4289702905 hasConceptScore W4289702905C169258074 @default.
- W4289702905 hasConceptScore W4289702905C187691185 @default.
- W4289702905 hasConceptScore W4289702905C205649164 @default.
- W4289702905 hasConceptScore W4289702905C2524010 @default.
- W4289702905 hasConceptScore W4289702905C27181475 @default.
- W4289702905 hasConceptScore W4289702905C33923547 @default.
- W4289702905 hasConceptScore W4289702905C41008148 @default.
- W4289702905 hasConceptScore W4289702905C78600449 @default.
- W4289702905 hasLocation W42897029051 @default.
- W4289702905 hasOpenAccess W4289702905 @default.
- W4289702905 hasPrimaryLocation W42897029051 @default.
- W4289702905 hasRelatedWork W2779764073 @default.
- W4289702905 hasRelatedWork W2951086240 @default.
- W4289702905 hasRelatedWork W2979979539 @default.
- W4289702905 hasRelatedWork W3004897296 @default.
- W4289702905 hasRelatedWork W3012287563 @default.
- W4289702905 hasRelatedWork W3080602699 @default.
- W4289702905 hasRelatedWork W3195168932 @default.
- W4289702905 hasRelatedWork W3209815900 @default.
- W4289702905 hasRelatedWork W3213954455 @default.
- W4289702905 hasRelatedWork W4285343791 @default.
- W4289702905 isParatext "false" @default.
- W4289702905 isRetracted "false" @default.
- W4289702905 workType "article" @default.