Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289704838> ?p ?o ?g. }
- W4289704838 endingPage "1879" @default.
- W4289704838 startingPage "1879" @default.
- W4289704838 abstract "Skin image analysis using artificial intelligence (AI) has recently attracted significant research interest, particularly for analyzing skin images captured by mobile devices. Acne is one of the most common skin conditions with profound effects in severe cases. In this study, we developed an AI system called AcneDet for automatic acne object detection and acne severity grading using facial images captured by smartphones. AcneDet includes two models for two tasks: (1) a Faster R-CNN-based deep learning model for the detection of acne lesion objects of four types, including blackheads/whiteheads, papules/pustules, nodules/cysts, and acne scars; and (2) a LightGBM machine learning model for grading acne severity using the Investigator’s Global Assessment (IGA) scale. The output of the Faster R-CNN model, i.e., the counts of each acne type, were used as input for the LightGBM model for acne severity grading. A dataset consisting of 1572 labeled facial images captured by both iOS and Android smartphones was used for training. The results show that the Faster R-CNN model achieves a mAP of 0.54 for acne object detection. The mean accuracy of acne severity grading by the LightGBM model is 0.85. With this study, we hope to contribute to the development of artificial intelligent systems to help acne patients better understand their conditions and support doctors in acne diagnosis." @default.
- W4289704838 created "2022-08-04" @default.
- W4289704838 creator A5008692298 @default.
- W4289704838 creator A5021367415 @default.
- W4289704838 creator A5022601883 @default.
- W4289704838 creator A5024350265 @default.
- W4289704838 creator A5027087643 @default.
- W4289704838 creator A5035889569 @default.
- W4289704838 creator A5037353660 @default.
- W4289704838 creator A5044741168 @default.
- W4289704838 creator A5045310338 @default.
- W4289704838 creator A5048966876 @default.
- W4289704838 creator A5051641764 @default.
- W4289704838 creator A5055580387 @default.
- W4289704838 creator A5068675769 @default.
- W4289704838 creator A5077347243 @default.
- W4289704838 date "2022-08-03" @default.
- W4289704838 modified "2023-10-16" @default.
- W4289704838 title "Automatic Acne Object Detection and Acne Severity Grading Using Smartphone Images and Artificial Intelligence" @default.
- W4289704838 cites W1794483082 @default.
- W4289704838 cites W2108344016 @default.
- W4289704838 cites W2276726626 @default.
- W4289704838 cites W2510872901 @default.
- W4289704838 cites W2787056634 @default.
- W4289704838 cites W2895087295 @default.
- W4289704838 cites W2963883574 @default.
- W4289704838 cites W2969525510 @default.
- W4289704838 cites W2977323083 @default.
- W4289704838 cites W2978916182 @default.
- W4289704838 cites W3003369869 @default.
- W4289704838 cites W3004237487 @default.
- W4289704838 cites W3110374746 @default.
- W4289704838 cites W3155756775 @default.
- W4289704838 cites W3163920619 @default.
- W4289704838 doi "https://doi.org/10.3390/diagnostics12081879" @default.
- W4289704838 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36010229" @default.
- W4289704838 hasPublicationYear "2022" @default.
- W4289704838 type Work @default.
- W4289704838 citedByCount "6" @default.
- W4289704838 countsByYear W42897048382023 @default.
- W4289704838 crossrefType "journal-article" @default.
- W4289704838 hasAuthorship W4289704838A5008692298 @default.
- W4289704838 hasAuthorship W4289704838A5021367415 @default.
- W4289704838 hasAuthorship W4289704838A5022601883 @default.
- W4289704838 hasAuthorship W4289704838A5024350265 @default.
- W4289704838 hasAuthorship W4289704838A5027087643 @default.
- W4289704838 hasAuthorship W4289704838A5035889569 @default.
- W4289704838 hasAuthorship W4289704838A5037353660 @default.
- W4289704838 hasAuthorship W4289704838A5044741168 @default.
- W4289704838 hasAuthorship W4289704838A5045310338 @default.
- W4289704838 hasAuthorship W4289704838A5048966876 @default.
- W4289704838 hasAuthorship W4289704838A5051641764 @default.
- W4289704838 hasAuthorship W4289704838A5055580387 @default.
- W4289704838 hasAuthorship W4289704838A5068675769 @default.
- W4289704838 hasAuthorship W4289704838A5077347243 @default.
- W4289704838 hasBestOaLocation W42897048381 @default.
- W4289704838 hasConcept C127413603 @default.
- W4289704838 hasConcept C141071460 @default.
- W4289704838 hasConcept C147176958 @default.
- W4289704838 hasConcept C153180895 @default.
- W4289704838 hasConcept C154945302 @default.
- W4289704838 hasConcept C16005928 @default.
- W4289704838 hasConcept C2777286243 @default.
- W4289704838 hasConcept C2777673923 @default.
- W4289704838 hasConcept C2993012660 @default.
- W4289704838 hasConcept C31972630 @default.
- W4289704838 hasConcept C41008148 @default.
- W4289704838 hasConcept C71924100 @default.
- W4289704838 hasConcept C95623464 @default.
- W4289704838 hasConceptScore W4289704838C127413603 @default.
- W4289704838 hasConceptScore W4289704838C141071460 @default.
- W4289704838 hasConceptScore W4289704838C147176958 @default.
- W4289704838 hasConceptScore W4289704838C153180895 @default.
- W4289704838 hasConceptScore W4289704838C154945302 @default.
- W4289704838 hasConceptScore W4289704838C16005928 @default.
- W4289704838 hasConceptScore W4289704838C2777286243 @default.
- W4289704838 hasConceptScore W4289704838C2777673923 @default.
- W4289704838 hasConceptScore W4289704838C2993012660 @default.
- W4289704838 hasConceptScore W4289704838C31972630 @default.
- W4289704838 hasConceptScore W4289704838C41008148 @default.
- W4289704838 hasConceptScore W4289704838C71924100 @default.
- W4289704838 hasConceptScore W4289704838C95623464 @default.
- W4289704838 hasIssue "8" @default.
- W4289704838 hasLocation W42897048381 @default.
- W4289704838 hasLocation W42897048382 @default.
- W4289704838 hasLocation W42897048383 @default.
- W4289704838 hasLocation W42897048384 @default.
- W4289704838 hasOpenAccess W4289704838 @default.
- W4289704838 hasPrimaryLocation W42897048381 @default.
- W4289704838 hasRelatedWork W1975087469 @default.
- W4289704838 hasRelatedWork W2009332870 @default.
- W4289704838 hasRelatedWork W2083939971 @default.
- W4289704838 hasRelatedWork W2108745537 @default.
- W4289704838 hasRelatedWork W2185661708 @default.
- W4289704838 hasRelatedWork W2404156760 @default.
- W4289704838 hasRelatedWork W2590979198 @default.
- W4289704838 hasRelatedWork W3011885879 @default.
- W4289704838 hasRelatedWork W4293775409 @default.