Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289710459> ?p ?o ?g. }
- W4289710459 endingPage "A9" @default.
- W4289710459 startingPage "A9" @default.
- W4289710459 abstract "Context. The second Gaia data release ( Gaia DR2) provides precise five-parameter astrometric data (positions, proper motions, and parallaxes) for an unprecedented number of sources (more than 1.3 billion, mostly stars). This new wealth of data will enable the undertaking of statistical analysis of many astrophysical problems that were previously infeasible for lack of reliable astrometry, and in particular because of the lack of parallaxes. However, the use of this wealth of astrometric data comes with a specific challenge: how can the astrophysical parameters of interest be properly inferred from these data? Aims. The main focus of this paper, but not the only focus, is the issue of the estimation of distances from parallaxes, possibly combined with other information. We start with a critical review of the methods traditionally used to obtain distances from parallaxes and their shortcomings. Then we provide guidelines on how to use parallaxes more efficiently to estimate distances by using Bayesian methods. In particular we also show that negative parallaxes, or parallaxes with relatively large uncertainties still contain valuable information. Finally, we provide examples that show more generally how to use astrometric data for parameter estimation, including the combination of proper motions and parallaxes and the handling of covariances in the uncertainties. Methods. The paper contains examples based on simulated Gaia data to illustrate the problems and the solutions proposed. Furthermore, the developments and methods proposed in the paper are linked to a set of tutorials included in the Gaia archive documentation that provide practical examples and a good starting point for the application of the recommendations to actual problems. In all cases the source code for the analysis methods is provided. Results. Our main recommendation is to always treat the derivation of (astro-)physical parameters from astrometric data, in particular when parallaxes are involved, as an inference problem which should preferably be handled with a full Bayesian approach. Conclusions. Gaia will provide fundamental data for many fields of astronomy. Further data releases will provide more data, and more precise data. Nevertheless, to fully use the potential it will always be necessary to pay careful attention to the statistical treatment of parallaxes and proper motions. The purpose of this paper is to help astronomers find the correct approach." @default.
- W4289710459 created "2022-08-04" @default.
- W4289710459 creator A5011851086 @default.
- W4289710459 creator A5016447094 @default.
- W4289710459 creator A5031717439 @default.
- W4289710459 creator A5039281711 @default.
- W4289710459 creator A5043279924 @default.
- W4289710459 creator A5053700878 @default.
- W4289710459 creator A5073564346 @default.
- W4289710459 creator A5078113123 @default.
- W4289710459 creator A5078272144 @default.
- W4289710459 creator A5078464030 @default.
- W4289710459 date "2018-08-01" @default.
- W4289710459 modified "2023-10-17" @default.
- W4289710459 title "<i>Gaia</i>Data Release 2" @default.
- W4289710459 cites W1658330429 @default.
- W4289710459 cites W1992285003 @default.
- W4289710459 cites W2040367467 @default.
- W4289710459 cites W2093671563 @default.
- W4289710459 cites W2169974364 @default.
- W4289710459 cites W2519801349 @default.
- W4289710459 cites W2522000147 @default.
- W4289710459 cites W2523828156 @default.
- W4289710459 cites W2605390414 @default.
- W4289710459 cites W2606076637 @default.
- W4289710459 cites W2607013364 @default.
- W4289710459 cites W2611733916 @default.
- W4289710459 cites W2617416144 @default.
- W4289710459 cites W2730555596 @default.
- W4289710459 cites W2736202242 @default.
- W4289710459 cites W2798336535 @default.
- W4289710459 cites W2799268730 @default.
- W4289710459 cites W2962789833 @default.
- W4289710459 cites W3102784118 @default.
- W4289710459 cites W3104027051 @default.
- W4289710459 cites W3104570363 @default.
- W4289710459 cites W3122489605 @default.
- W4289710459 cites W3124986913 @default.
- W4289710459 cites W3173720204 @default.
- W4289710459 cites W4231440644 @default.
- W4289710459 cites W4289710306 @default.
- W4289710459 cites W4289784996 @default.
- W4289710459 cites W4289924294 @default.
- W4289710459 cites W4289926186 @default.
- W4289710459 cites W4292954804 @default.
- W4289710459 cites W607914612 @default.
- W4289710459 doi "https://doi.org/10.1051/0004-6361/201832964" @default.
- W4289710459 hasPublicationYear "2018" @default.
- W4289710459 type Work @default.
- W4289710459 citedByCount "541" @default.
- W4289710459 countsByYear W42897104592018 @default.
- W4289710459 countsByYear W42897104592019 @default.
- W4289710459 countsByYear W42897104592020 @default.
- W4289710459 countsByYear W42897104592021 @default.
- W4289710459 countsByYear W42897104592022 @default.
- W4289710459 countsByYear W42897104592023 @default.
- W4289710459 crossrefType "journal-article" @default.
- W4289710459 hasAuthorship W4289710459A5011851086 @default.
- W4289710459 hasAuthorship W4289710459A5016447094 @default.
- W4289710459 hasAuthorship W4289710459A5031717439 @default.
- W4289710459 hasAuthorship W4289710459A5039281711 @default.
- W4289710459 hasAuthorship W4289710459A5043279924 @default.
- W4289710459 hasAuthorship W4289710459A5053700878 @default.
- W4289710459 hasAuthorship W4289710459A5073564346 @default.
- W4289710459 hasAuthorship W4289710459A5078113123 @default.
- W4289710459 hasAuthorship W4289710459A5078272144 @default.
- W4289710459 hasAuthorship W4289710459A5078464030 @default.
- W4289710459 hasBestOaLocation W42897104591 @default.
- W4289710459 hasConcept C107673813 @default.
- W4289710459 hasConcept C120665830 @default.
- W4289710459 hasConcept C121332964 @default.
- W4289710459 hasConcept C133725777 @default.
- W4289710459 hasConcept C150846664 @default.
- W4289710459 hasConcept C151730666 @default.
- W4289710459 hasConcept C154945302 @default.
- W4289710459 hasConcept C192209626 @default.
- W4289710459 hasConcept C2524010 @default.
- W4289710459 hasConcept C2779343474 @default.
- W4289710459 hasConcept C28719098 @default.
- W4289710459 hasConcept C33923547 @default.
- W4289710459 hasConcept C41008148 @default.
- W4289710459 hasConcept C44870925 @default.
- W4289710459 hasConcept C86803240 @default.
- W4289710459 hasConceptScore W4289710459C107673813 @default.
- W4289710459 hasConceptScore W4289710459C120665830 @default.
- W4289710459 hasConceptScore W4289710459C121332964 @default.
- W4289710459 hasConceptScore W4289710459C133725777 @default.
- W4289710459 hasConceptScore W4289710459C150846664 @default.
- W4289710459 hasConceptScore W4289710459C151730666 @default.
- W4289710459 hasConceptScore W4289710459C154945302 @default.
- W4289710459 hasConceptScore W4289710459C192209626 @default.
- W4289710459 hasConceptScore W4289710459C2524010 @default.
- W4289710459 hasConceptScore W4289710459C2779343474 @default.
- W4289710459 hasConceptScore W4289710459C28719098 @default.
- W4289710459 hasConceptScore W4289710459C33923547 @default.
- W4289710459 hasConceptScore W4289710459C41008148 @default.
- W4289710459 hasConceptScore W4289710459C44870925 @default.
- W4289710459 hasConceptScore W4289710459C86803240 @default.