Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289716624> ?p ?o ?g. }
- W4289716624 endingPage "2125" @default.
- W4289716624 startingPage "2115" @default.
- W4289716624 abstract "Healthcare plays an increasingly essential role in our daily life. Modern Hospital Information Systems (HISs) record and store detailed medical treatment process information for all patients as event logs. By taking event logs as input, process mining techniques have been widely applied to extract valuable insights to improve medical treatment processes and deliver better healthcare services. However, considering the complexity of collaborations among different medical departments, existing model discovery techniques cannot be applied directly. To handle this limitation, this paper proposes a novel approach to support the discovery of Cross-department Collaborative Healthcare Process (CCHP) models from medical event logs. Specifically, an extension of classical Petri Nets with message and resource attributes is first introduced to formalize CCHPs. Then, a novel discovery algorithm is proposed to discover Intra-department Healthcare Process (IHP) models. Next, collaboration patterns among medical departments are formalized and corresponding discovery algorithms are given on that basis. Finally, a global CCHP model is obtained by integrating all discovered collaboration patterns and IHP models. By using four public medical event logs, we quantitatively compare our approach with the state-of-the-art process mining techniques in terms of model quality, and our experimental results demonstrate that the proposed approach can discover more accurate healthcare process models. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Note to Practitioners</i> —The recorded medical event logs by HISs can be used to extract valuable insights for the analysis of healthcare processes. However, existing process model discovery techniques cannot be applied for the analysis directly due to the complex collaborations among different medical departments of a hospital. This paper introduces a novel approach for cross-department collaborative healthcare process model discovery from medical event logs. All proposed techniques are fully implemented and publicly available. Using four public medical event logs, we show the applicability and advantages of our approach against existing ones. The proposed techniques are applicable to the model discovery and behavior understanding of real-life operational healthcare processes." @default.
- W4289716624 created "2022-08-04" @default.
- W4289716624 creator A5003178957 @default.
- W4289716624 creator A5043774051 @default.
- W4289716624 creator A5046823477 @default.
- W4289716624 creator A5073321754 @default.
- W4289716624 creator A5088008147 @default.
- W4289716624 date "2023-07-01" @default.
- W4289716624 modified "2023-10-18" @default.
- W4289716624 title "Cross-Department Collaborative Healthcare Process Model Discovery From Event Logs" @default.
- W4289716624 cites W1035426169 @default.
- W4289716624 cites W1981182823 @default.
- W4289716624 cites W2011639698 @default.
- W4289716624 cites W2013306276 @default.
- W4289716624 cites W2042175319 @default.
- W4289716624 cites W2084864929 @default.
- W4289716624 cites W2098250644 @default.
- W4289716624 cites W2099753123 @default.
- W4289716624 cites W2107720122 @default.
- W4289716624 cites W2129466958 @default.
- W4289716624 cites W2158891129 @default.
- W4289716624 cites W2170917993 @default.
- W4289716624 cites W2336445786 @default.
- W4289716624 cites W2593007395 @default.
- W4289716624 cites W2773897169 @default.
- W4289716624 cites W2776996468 @default.
- W4289716624 cites W2803223001 @default.
- W4289716624 cites W2804845473 @default.
- W4289716624 cites W2806528198 @default.
- W4289716624 cites W2808655836 @default.
- W4289716624 cites W2886021712 @default.
- W4289716624 cites W2922897133 @default.
- W4289716624 cites W2943710525 @default.
- W4289716624 cites W2965218277 @default.
- W4289716624 cites W3014204580 @default.
- W4289716624 cites W3032967604 @default.
- W4289716624 cites W3090727495 @default.
- W4289716624 cites W3113683159 @default.
- W4289716624 cites W4230145224 @default.
- W4289716624 cites W4312219315 @default.
- W4289716624 doi "https://doi.org/10.1109/tase.2022.3194312" @default.
- W4289716624 hasPublicationYear "2023" @default.
- W4289716624 type Work @default.
- W4289716624 citedByCount "5" @default.
- W4289716624 countsByYear W42897166242022 @default.
- W4289716624 countsByYear W42897166242023 @default.
- W4289716624 crossrefType "journal-article" @default.
- W4289716624 hasAuthorship W4289716624A5003178957 @default.
- W4289716624 hasAuthorship W4289716624A5043774051 @default.
- W4289716624 hasAuthorship W4289716624A5046823477 @default.
- W4289716624 hasAuthorship W4289716624A5073321754 @default.
- W4289716624 hasAuthorship W4289716624A5088008147 @default.
- W4289716624 hasConcept C111919701 @default.
- W4289716624 hasConcept C11413529 @default.
- W4289716624 hasConcept C121332964 @default.
- W4289716624 hasConcept C124101348 @default.
- W4289716624 hasConcept C124670913 @default.
- W4289716624 hasConcept C127413603 @default.
- W4289716624 hasConcept C160735492 @default.
- W4289716624 hasConcept C162324750 @default.
- W4289716624 hasConcept C174998907 @default.
- W4289716624 hasConcept C207505557 @default.
- W4289716624 hasConcept C21547014 @default.
- W4289716624 hasConcept C2522767166 @default.
- W4289716624 hasConcept C2779662365 @default.
- W4289716624 hasConcept C38677869 @default.
- W4289716624 hasConcept C41008148 @default.
- W4289716624 hasConcept C50522688 @default.
- W4289716624 hasConcept C62520636 @default.
- W4289716624 hasConcept C76956256 @default.
- W4289716624 hasConcept C80309976 @default.
- W4289716624 hasConcept C85345410 @default.
- W4289716624 hasConcept C93453677 @default.
- W4289716624 hasConcept C98045186 @default.
- W4289716624 hasConceptScore W4289716624C111919701 @default.
- W4289716624 hasConceptScore W4289716624C11413529 @default.
- W4289716624 hasConceptScore W4289716624C121332964 @default.
- W4289716624 hasConceptScore W4289716624C124101348 @default.
- W4289716624 hasConceptScore W4289716624C124670913 @default.
- W4289716624 hasConceptScore W4289716624C127413603 @default.
- W4289716624 hasConceptScore W4289716624C160735492 @default.
- W4289716624 hasConceptScore W4289716624C162324750 @default.
- W4289716624 hasConceptScore W4289716624C174998907 @default.
- W4289716624 hasConceptScore W4289716624C207505557 @default.
- W4289716624 hasConceptScore W4289716624C21547014 @default.
- W4289716624 hasConceptScore W4289716624C2522767166 @default.
- W4289716624 hasConceptScore W4289716624C2779662365 @default.
- W4289716624 hasConceptScore W4289716624C38677869 @default.
- W4289716624 hasConceptScore W4289716624C41008148 @default.
- W4289716624 hasConceptScore W4289716624C50522688 @default.
- W4289716624 hasConceptScore W4289716624C62520636 @default.
- W4289716624 hasConceptScore W4289716624C76956256 @default.
- W4289716624 hasConceptScore W4289716624C80309976 @default.
- W4289716624 hasConceptScore W4289716624C85345410 @default.
- W4289716624 hasConceptScore W4289716624C93453677 @default.
- W4289716624 hasConceptScore W4289716624C98045186 @default.
- W4289716624 hasFunder F4320321001 @default.
- W4289716624 hasIssue "3" @default.