Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289731611> ?p ?o ?g. }
- W4289731611 endingPage "2742" @default.
- W4289731611 startingPage "2742" @default.
- W4289731611 abstract "Feature selection (FS) is commonly thought of as a pre-processing strategy for determining the best subset of characteristics from a given collection of features. Here, a novel discrete artificial gorilla troop optimization (DAGTO) technique is introduced for the first time to handle FS tasks in the healthcare sector. Depending on the number and type of objective functions, four variants of the proposed method are implemented in this article, namely: (1) single-objective (SO-DAGTO), (2) bi-objective (wrapper) (MO-DAGTO1), (3) bi-objective (filter wrapper hybrid) (MO-DAGTO2), and (4) tri-objective (filter wrapper hybrid) (MO-DAGTO3) for identifying relevant features in diagnosing a particular disease. We provide an outstanding gorilla initialization strategy based on the label mutual information (MI) with the aim of increasing population variety and accelerate convergence. To verify the performance of the presented methods, ten medical datasets are taken into consideration, which are of variable dimensions. A comparison is also implemented between the best of the four suggested approaches (MO-DAGTO2) and four established multi-objective FS strategies, and it is statistically proven to be the superior one. Finally, a case study with COVID-19 samples is performed to extract the critical factors related to it and to demonstrate how this method is fruitful in real-world applications." @default.
- W4289731611 created "2022-08-04" @default.
- W4289731611 creator A5004664070 @default.
- W4289731611 creator A5009120208 @default.
- W4289731611 creator A5027005332 @default.
- W4289731611 creator A5031377837 @default.
- W4289731611 creator A5037359050 @default.
- W4289731611 creator A5042253646 @default.
- W4289731611 creator A5046194597 @default.
- W4289731611 date "2022-08-03" @default.
- W4289731611 modified "2023-10-05" @default.
- W4289731611 title "Feature Selection Using Artificial Gorilla Troop Optimization for Biomedical Data: A Case Analysis with COVID-19 Data" @default.
- W4289731611 cites W1523989055 @default.
- W4289731611 cites W1543715688 @default.
- W4289731611 cites W1692713333 @default.
- W4289731611 cites W1693712237 @default.
- W4289731611 cites W2006027806 @default.
- W4289731611 cites W2010345901 @default.
- W4289731611 cites W2014732030 @default.
- W4289731611 cites W2014915963 @default.
- W4289731611 cites W2019683663 @default.
- W4289731611 cites W2039667767 @default.
- W4289731611 cites W2072026441 @default.
- W4289731611 cites W2072661909 @default.
- W4289731611 cites W2086208228 @default.
- W4289731611 cites W2102831150 @default.
- W4289731611 cites W2114456019 @default.
- W4289731611 cites W2115884121 @default.
- W4289731611 cites W2120216197 @default.
- W4289731611 cites W2126105956 @default.
- W4289731611 cites W2149772057 @default.
- W4289731611 cites W2150687401 @default.
- W4289731611 cites W2154053567 @default.
- W4289731611 cites W2158868693 @default.
- W4289731611 cites W2167101736 @default.
- W4289731611 cites W2196983891 @default.
- W4289731611 cites W2213289911 @default.
- W4289731611 cites W2287654067 @default.
- W4289731611 cites W2343420905 @default.
- W4289731611 cites W2364240738 @default.
- W4289731611 cites W2406762112 @default.
- W4289731611 cites W2586902980 @default.
- W4289731611 cites W2612473079 @default.
- W4289731611 cites W2746914601 @default.
- W4289731611 cites W2755582817 @default.
- W4289731611 cites W2794866761 @default.
- W4289731611 cites W2883440102 @default.
- W4289731611 cites W2917336158 @default.
- W4289731611 cites W2924610876 @default.
- W4289731611 cites W2945341027 @default.
- W4289731611 cites W2977905330 @default.
- W4289731611 cites W3006097138 @default.
- W4289731611 cites W3016544281 @default.
- W4289731611 cites W3020025139 @default.
- W4289731611 cites W3033046285 @default.
- W4289731611 cites W3066100685 @default.
- W4289731611 cites W3087000505 @default.
- W4289731611 cites W3087084215 @default.
- W4289731611 cites W3087224093 @default.
- W4289731611 cites W3095905040 @default.
- W4289731611 cites W3096523314 @default.
- W4289731611 cites W3133482888 @default.
- W4289731611 cites W3167375140 @default.
- W4289731611 cites W3170484221 @default.
- W4289731611 cites W3185076117 @default.
- W4289731611 cites W3193692461 @default.
- W4289731611 cites W3196141744 @default.
- W4289731611 cites W3207849004 @default.
- W4289731611 cites W4205873402 @default.
- W4289731611 cites W4287739103 @default.
- W4289731611 cites W53564293 @default.
- W4289731611 doi "https://doi.org/10.3390/math10152742" @default.
- W4289731611 hasPublicationYear "2022" @default.
- W4289731611 type Work @default.
- W4289731611 citedByCount "29" @default.
- W4289731611 countsByYear W42897316112022 @default.
- W4289731611 countsByYear W42897316112023 @default.
- W4289731611 crossrefType "journal-article" @default.
- W4289731611 hasAuthorship W4289731611A5004664070 @default.
- W4289731611 hasAuthorship W4289731611A5009120208 @default.
- W4289731611 hasAuthorship W4289731611A5027005332 @default.
- W4289731611 hasAuthorship W4289731611A5031377837 @default.
- W4289731611 hasAuthorship W4289731611A5037359050 @default.
- W4289731611 hasAuthorship W4289731611A5042253646 @default.
- W4289731611 hasAuthorship W4289731611A5046194597 @default.
- W4289731611 hasBestOaLocation W42897316111 @default.
- W4289731611 hasConcept C106131492 @default.
- W4289731611 hasConcept C114466953 @default.
- W4289731611 hasConcept C119857082 @default.
- W4289731611 hasConcept C124101348 @default.
- W4289731611 hasConcept C13280743 @default.
- W4289731611 hasConcept C138885662 @default.
- W4289731611 hasConcept C144024400 @default.
- W4289731611 hasConcept C148483581 @default.
- W4289731611 hasConcept C149923435 @default.
- W4289731611 hasConcept C151730666 @default.
- W4289731611 hasConcept C153180895 @default.
- W4289731611 hasConcept C154945302 @default.