Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289731875> ?p ?o ?g. }
- W4289731875 endingPage "3729" @default.
- W4289731875 startingPage "3729" @default.
- W4289731875 abstract "We present results that demonstrate the utility of machine learning techniques that are based on partial least squares (PLS) and artificial neural networks (ANNs) for estimating low-moderate chlorophyll-a (chl-a) concentrations in the western basin of Lake Erie (WBLE). Previous ocean color studies have resulted in a large number of algorithms that are based on spectral indices to estimate water quality parameters (WQPs) such as chl-a concentration from remote sensing reflectance. However, these spectral index algorithms are based on reflectance features at specific wavelengths and do not take advantage of the wealth of spectral information that is contained in hyperspectral data, and are often not easily adaptable to waters with conditions that are different from those in the datasets that were used to originally calibrate the indices. Recently, there have been efforts to use machine learning techniques that are based on ANNs and PLS regression to exploit the spectral richness contained in hyperspectral data and retrieve WQPs. In this study, we have combined an ANN model with output from PLS regression to retrieve chl-a concentration from hyperspectral data in the WBLE. We compared the results from the PLS-ANN method to those that were obtained from a band-ratio algorithm that is based on reflectances in the blue and green spectral regions, a band ratio algorithm that is based on reflectances in the red and near-infrared (NIR) spectral regions, and a PLS-only approach. For a dataset that was collected in 2012, with chl-a concentrations ranging from 0.48 to 21.2 µg/L, the PLS-ANN method yielded a root mean square error (RMSE) of 1.22 µg/L, whereas the blue-green ratio algorithm yielded an RMSE of 1.75 µg/L, the NIR-red ratio algorithm yielded an RMSE of 1.95 µg/L, and the PLS-only approach yielded an RMSE of 1.95 µg/L. The PLS-ANN method takes advantage of the PLS regression to identify specific wavelengths that contain most information about the variation in chl-a concentration, minimize spectral collinearity and redundancy in the data, and simplify the neural network’s input structure. The better performance of the PLS-ANN method can also be attributed to the neural network’s ability to account for nonlinearity in the relationship between chl-a concentration and spectral reflectance. The results indicate that the PLS-ANN method can be reliably used to estimate and monitor low-moderate chl-a concentrations in optically complex waters." @default.
- W4289731875 created "2022-08-04" @default.
- W4289731875 creator A5015352047 @default.
- W4289731875 creator A5024854533 @default.
- W4289731875 date "2022-08-03" @default.
- W4289731875 modified "2023-10-14" @default.
- W4289731875 title "Application of a PLS-Augmented ANN Model for Retrieving Chlorophyll-a from Hyperspectral Data in Case 2 Waters of the Western Basin of Lake Erie" @default.
- W4289731875 cites W1964861474 @default.
- W4289731875 cites W1969753304 @default.
- W4289731875 cites W1993492760 @default.
- W4289731875 cites W1999676742 @default.
- W4289731875 cites W2003601753 @default.
- W4289731875 cites W2003966758 @default.
- W4289731875 cites W2007101051 @default.
- W4289731875 cites W2012116092 @default.
- W4289731875 cites W2013080275 @default.
- W4289731875 cites W2015535333 @default.
- W4289731875 cites W2016441635 @default.
- W4289731875 cites W2020972217 @default.
- W4289731875 cites W2027294099 @default.
- W4289731875 cites W2035623332 @default.
- W4289731875 cites W2040760385 @default.
- W4289731875 cites W2045498047 @default.
- W4289731875 cites W2048985333 @default.
- W4289731875 cites W2069182838 @default.
- W4289731875 cites W2073309755 @default.
- W4289731875 cites W2081534347 @default.
- W4289731875 cites W2087269799 @default.
- W4289731875 cites W2100738276 @default.
- W4289731875 cites W2108584354 @default.
- W4289731875 cites W2120654088 @default.
- W4289731875 cites W2128827633 @default.
- W4289731875 cites W2132388458 @default.
- W4289731875 cites W2134244062 @default.
- W4289731875 cites W2137651245 @default.
- W4289731875 cites W2141193993 @default.
- W4289731875 cites W2144937055 @default.
- W4289731875 cites W2146278807 @default.
- W4289731875 cites W2146656095 @default.
- W4289731875 cites W2147904324 @default.
- W4289731875 cites W2157892772 @default.
- W4289731875 cites W2161247168 @default.
- W4289731875 cites W2165818698 @default.
- W4289731875 cites W2182532644 @default.
- W4289731875 cites W2323581234 @default.
- W4289731875 cites W2466906145 @default.
- W4289731875 cites W2587674390 @default.
- W4289731875 cites W2775808108 @default.
- W4289731875 cites W2790559779 @default.
- W4289731875 cites W2808645289 @default.
- W4289731875 cites W2943411962 @default.
- W4289731875 cites W2943845795 @default.
- W4289731875 cites W2990963920 @default.
- W4289731875 cites W2997348288 @default.
- W4289731875 cites W3036590418 @default.
- W4289731875 cites W3090169696 @default.
- W4289731875 doi "https://doi.org/10.3390/rs14153729" @default.
- W4289731875 hasPublicationYear "2022" @default.
- W4289731875 type Work @default.
- W4289731875 citedByCount "4" @default.
- W4289731875 countsByYear W42897318752022 @default.
- W4289731875 countsByYear W42897318752023 @default.
- W4289731875 crossrefType "journal-article" @default.
- W4289731875 hasAuthorship W4289731875A5015352047 @default.
- W4289731875 hasAuthorship W4289731875A5024854533 @default.
- W4289731875 hasBestOaLocation W42897318751 @default.
- W4289731875 hasConcept C108597893 @default.
- W4289731875 hasConcept C114700698 @default.
- W4289731875 hasConcept C119857082 @default.
- W4289731875 hasConcept C120665830 @default.
- W4289731875 hasConcept C121332964 @default.
- W4289731875 hasConcept C127313418 @default.
- W4289731875 hasConcept C154945302 @default.
- W4289731875 hasConcept C159078339 @default.
- W4289731875 hasConcept C22354355 @default.
- W4289731875 hasConcept C39432304 @default.
- W4289731875 hasConcept C41008148 @default.
- W4289731875 hasConcept C50644808 @default.
- W4289731875 hasConcept C62649853 @default.
- W4289731875 hasConceptScore W4289731875C108597893 @default.
- W4289731875 hasConceptScore W4289731875C114700698 @default.
- W4289731875 hasConceptScore W4289731875C119857082 @default.
- W4289731875 hasConceptScore W4289731875C120665830 @default.
- W4289731875 hasConceptScore W4289731875C121332964 @default.
- W4289731875 hasConceptScore W4289731875C127313418 @default.
- W4289731875 hasConceptScore W4289731875C154945302 @default.
- W4289731875 hasConceptScore W4289731875C159078339 @default.
- W4289731875 hasConceptScore W4289731875C22354355 @default.
- W4289731875 hasConceptScore W4289731875C39432304 @default.
- W4289731875 hasConceptScore W4289731875C41008148 @default.
- W4289731875 hasConceptScore W4289731875C50644808 @default.
- W4289731875 hasConceptScore W4289731875C62649853 @default.
- W4289731875 hasIssue "15" @default.
- W4289731875 hasLocation W42897318751 @default.
- W4289731875 hasOpenAccess W4289731875 @default.
- W4289731875 hasPrimaryLocation W42897318751 @default.
- W4289731875 hasRelatedWork W1511764222 @default.
- W4289731875 hasRelatedWork W1972448189 @default.