Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289743275> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4289743275 abstract "Let $p$ be a prime, $e$ a positive integer, $q = p^e$, and let $mathbb{F}_q$ denote the finite field of $q$ elements. Let $f_i : mathbb{F}_q^2tomathbb{F}_q$ be arbitrary functions, where $1le ile l$, $i$ and $l$ are integers. The digraph $D = D(q;bf{f})$, where ${bf f}=(f_1,dotso,f_l) : mathbb{F}_q^2tomathbb{F}_q^l$, is defined as follows. The vertex set of $D$ is $mathbb{F}_q^{l+1}$. There is an arc from a vertex ${bf x} = (x_1,dotso,x_{l+1})$ to a vertex ${bf y} = (y_1,dotso,y_{l+1})$ if $ x_i + y_i = f_{i-1}(x_1,y_1) $ for all $i$, $2le i le l+1$. In this paper we study the diameter of $D(q; {bf f})$ in the special case of monomial digraphs $D(q; m,n)$: ${bf f} = f_1$ and $f_1(x,y) = x^m y^n$ for some nonnegative integers $m$ and $n$." @default.
- W4289743275 created "2022-08-04" @default.
- W4289743275 creator A5019962152 @default.
- W4289743275 creator A5031529103 @default.
- W4289743275 creator A5079973377 @default.
- W4289743275 creator A5086424077 @default.
- W4289743275 date "2018-07-30" @default.
- W4289743275 modified "2023-09-27" @default.
- W4289743275 title "Diameter of Some Monomial Digraphs" @default.
- W4289743275 doi "https://doi.org/10.48550/arxiv.1807.11360" @default.
- W4289743275 hasPublicationYear "2018" @default.
- W4289743275 type Work @default.
- W4289743275 citedByCount "0" @default.
- W4289743275 crossrefType "posted-content" @default.
- W4289743275 hasAuthorship W4289743275A5019962152 @default.
- W4289743275 hasAuthorship W4289743275A5031529103 @default.
- W4289743275 hasAuthorship W4289743275A5079973377 @default.
- W4289743275 hasAuthorship W4289743275A5086424077 @default.
- W4289743275 hasBestOaLocation W42897432751 @default.
- W4289743275 hasConcept C11252640 @default.
- W4289743275 hasConcept C114614502 @default.
- W4289743275 hasConcept C121332964 @default.
- W4289743275 hasConcept C132525143 @default.
- W4289743275 hasConcept C199360897 @default.
- W4289743275 hasConcept C33923547 @default.
- W4289743275 hasConcept C41008148 @default.
- W4289743275 hasConcept C77926391 @default.
- W4289743275 hasConcept C80899671 @default.
- W4289743275 hasConcept C97137487 @default.
- W4289743275 hasConceptScore W4289743275C11252640 @default.
- W4289743275 hasConceptScore W4289743275C114614502 @default.
- W4289743275 hasConceptScore W4289743275C121332964 @default.
- W4289743275 hasConceptScore W4289743275C132525143 @default.
- W4289743275 hasConceptScore W4289743275C199360897 @default.
- W4289743275 hasConceptScore W4289743275C33923547 @default.
- W4289743275 hasConceptScore W4289743275C41008148 @default.
- W4289743275 hasConceptScore W4289743275C77926391 @default.
- W4289743275 hasConceptScore W4289743275C80899671 @default.
- W4289743275 hasConceptScore W4289743275C97137487 @default.
- W4289743275 hasLocation W42897432751 @default.
- W4289743275 hasOpenAccess W4289743275 @default.
- W4289743275 hasPrimaryLocation W42897432751 @default.
- W4289743275 hasRelatedWork W1500778847 @default.
- W4289743275 hasRelatedWork W1595844330 @default.
- W4289743275 hasRelatedWork W1977013452 @default.
- W4289743275 hasRelatedWork W1980921277 @default.
- W4289743275 hasRelatedWork W2059610094 @default.
- W4289743275 hasRelatedWork W2262207814 @default.
- W4289743275 hasRelatedWork W2301742412 @default.
- W4289743275 hasRelatedWork W2324886909 @default.
- W4289743275 hasRelatedWork W2791976399 @default.
- W4289743275 hasRelatedWork W3041670244 @default.
- W4289743275 isParatext "false" @default.
- W4289743275 isRetracted "false" @default.
- W4289743275 workType "article" @default.