Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289754920> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4289754920 endingPage "239" @default.
- W4289754920 startingPage "227" @default.
- W4289754920 abstract "Abstract Recent studies have suggested that circulating tumor cells with abnormalities in gene copy numbers in mononuclear cell‐enriched peripheral blood samples, such as circulating genetically abnormal cells (CACs), can be used as a non‐invasive tool to detect patients with benign pulmonary nodules. These cells are identified through fluorescence signals counting by using 4‐color fluorescence in situ hybridization (FISH) technology that exhibits high stability, sensitivity, and specificity. When FISH data are analyzed, the overlapping cells and fluorescence noise is a great challenge for identifying of CACs, thereby seriously affecting the efficiency of clinical diagnosis. To address this problem, in this study, we proposed an end‐to‐end FISH‐based method (CACNET) for CAC identification. CACNET achieved nuclear segmentation and counted 4‐color staining signals through improved Mask region‐based convolutional neural network (R‐CNN), followed by cell category (normal cell, deletion cell, gain cell, or CAC) according to pathological criteria. Firstly, the segmentation accuracy of overlapping nuclei was improved by adding an edge constraint head during training. Then, the interference of fluorescence noise was reduced by fusing non‐local module to reconstruct the feature extraction network of Mask R‐CNN. We trained and tested the proposed model on a dataset comprising 700 frames with 58,083 nuclei. The Accuracy, Sensitivity, and Specificity (overall performance metric for the algorithm) of CAC identification with CACNET were 94.06%, 92.1%, and 99.8%, respectively. Moreover, the developed method exhibited approximately identification speed of approximately 0.22 s per frames. The results showed that the proposed method outperformed the existing CAC identification methods, making it a promising approach for early screening of lung cancer." @default.
- W4289754920 created "2022-08-04" @default.
- W4289754920 creator A5014888334 @default.
- W4289754920 creator A5015084255 @default.
- W4289754920 creator A5018413478 @default.
- W4289754920 creator A5019288987 @default.
- W4289754920 creator A5042421322 @default.
- W4289754920 creator A5044917311 @default.
- W4289754920 creator A5065797055 @default.
- W4289754920 date "2022-08-15" @default.
- W4289754920 modified "2023-10-18" @default.
- W4289754920 title "Attention <scp>Mask R‐CNN</scp> with edge refinement algorithm for identifying circulating genetically abnormal cells" @default.
- W4289754920 cites W1570699891 @default.
- W4289754920 cites W2022105434 @default.
- W4289754920 cites W2071758096 @default.
- W4289754920 cites W2133059825 @default.
- W4289754920 cites W2133153294 @default.
- W4289754920 cites W2139958356 @default.
- W4289754920 cites W2194775991 @default.
- W4289754920 cites W2602848949 @default.
- W4289754920 cites W2606438808 @default.
- W4289754920 cites W2903814366 @default.
- W4289754920 cites W2944942638 @default.
- W4289754920 cites W2955371778 @default.
- W4289754920 cites W2963091558 @default.
- W4289754920 cites W2963150697 @default.
- W4289754920 cites W2981949229 @default.
- W4289754920 cites W3005494042 @default.
- W4289754920 cites W3016692621 @default.
- W4289754920 cites W3029733777 @default.
- W4289754920 cites W3034681942 @default.
- W4289754920 cites W3043140034 @default.
- W4289754920 cites W3082043744 @default.
- W4289754920 cites W3118883070 @default.
- W4289754920 cites W3151728983 @default.
- W4289754920 cites W4213158923 @default.
- W4289754920 cites W4220739159 @default.
- W4289754920 doi "https://doi.org/10.1002/cyto.a.24682" @default.
- W4289754920 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36908135" @default.
- W4289754920 hasPublicationYear "2022" @default.
- W4289754920 type Work @default.
- W4289754920 citedByCount "2" @default.
- W4289754920 countsByYear W42897549202023 @default.
- W4289754920 crossrefType "journal-article" @default.
- W4289754920 hasAuthorship W4289754920A5014888334 @default.
- W4289754920 hasAuthorship W4289754920A5015084255 @default.
- W4289754920 hasAuthorship W4289754920A5018413478 @default.
- W4289754920 hasAuthorship W4289754920A5019288987 @default.
- W4289754920 hasAuthorship W4289754920A5042421322 @default.
- W4289754920 hasAuthorship W4289754920A5044917311 @default.
- W4289754920 hasAuthorship W4289754920A5065797055 @default.
- W4289754920 hasConcept C104317684 @default.
- W4289754920 hasConcept C11413529 @default.
- W4289754920 hasConcept C115961682 @default.
- W4289754920 hasConcept C153180895 @default.
- W4289754920 hasConcept C154945302 @default.
- W4289754920 hasConcept C2777542201 @default.
- W4289754920 hasConcept C30481170 @default.
- W4289754920 hasConcept C41008148 @default.
- W4289754920 hasConcept C54355233 @default.
- W4289754920 hasConcept C81363708 @default.
- W4289754920 hasConcept C86803240 @default.
- W4289754920 hasConcept C89600930 @default.
- W4289754920 hasConcept C99498987 @default.
- W4289754920 hasConceptScore W4289754920C104317684 @default.
- W4289754920 hasConceptScore W4289754920C11413529 @default.
- W4289754920 hasConceptScore W4289754920C115961682 @default.
- W4289754920 hasConceptScore W4289754920C153180895 @default.
- W4289754920 hasConceptScore W4289754920C154945302 @default.
- W4289754920 hasConceptScore W4289754920C2777542201 @default.
- W4289754920 hasConceptScore W4289754920C30481170 @default.
- W4289754920 hasConceptScore W4289754920C41008148 @default.
- W4289754920 hasConceptScore W4289754920C54355233 @default.
- W4289754920 hasConceptScore W4289754920C81363708 @default.
- W4289754920 hasConceptScore W4289754920C86803240 @default.
- W4289754920 hasConceptScore W4289754920C89600930 @default.
- W4289754920 hasConceptScore W4289754920C99498987 @default.
- W4289754920 hasFunder F4320321001 @default.
- W4289754920 hasIssue "3" @default.
- W4289754920 hasLocation W42897549201 @default.
- W4289754920 hasLocation W42897549202 @default.
- W4289754920 hasOpenAccess W4289754920 @default.
- W4289754920 hasPrimaryLocation W42897549201 @default.
- W4289754920 hasRelatedWork W2521062615 @default.
- W4289754920 hasRelatedWork W2735477435 @default.
- W4289754920 hasRelatedWork W2767651786 @default.
- W4289754920 hasRelatedWork W2912288872 @default.
- W4289754920 hasRelatedWork W3016958897 @default.
- W4289754920 hasRelatedWork W3045739591 @default.
- W4289754920 hasRelatedWork W3181746755 @default.
- W4289754920 hasRelatedWork W4200528772 @default.
- W4289754920 hasRelatedWork W4283379348 @default.
- W4289754920 hasRelatedWork W4312417841 @default.
- W4289754920 hasVolume "103" @default.
- W4289754920 isParatext "false" @default.
- W4289754920 isRetracted "false" @default.
- W4289754920 workType "article" @default.