Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289766793> ?p ?o ?g. }
- W4289766793 endingPage "16558" @default.
- W4289766793 startingPage "16534" @default.
- W4289766793 abstract "Coastal areas are one of the most threatened natural systems in the world. Environmental beach indicators, such as erosion and deposition rates of exposed beaches in Andalusia (640 km), were calculated using the upper limit of the active beach profile and detailed orthophotos (1:2500) for the periods 1956–1977, 1977–2001 and 2001–2011. A hybrid classification method, both supervised and unsupervised, based on machine-learning (ML) techniques was then applied to model beach response and dynamics for this 55-year period. The use of a K-means technique allowed stratification into four beach groups that have responded similarly in terms of coastline mobility and erosion/deposition patterns. Furthermore, the application of a classification and regression tree (CART) based on the K-means results helped to identify the threshold values for erosional and depositional rates and the period that characterises each cluster or stratum, enabling correct classification of 1415 out of 1509 beaches (93.77%)." @default.
- W4289766793 created "2022-08-04" @default.
- W4289766793 creator A5001737240 @default.
- W4289766793 creator A5017070280 @default.
- W4289766793 creator A5025819441 @default.
- W4289766793 creator A5077307732 @default.
- W4289766793 date "2022-08-10" @default.
- W4289766793 modified "2023-10-03" @default.
- W4289766793 title "A machine-learning hybrid-classification method for stratification of multidecadal beach dynamics" @default.
- W4289766793 cites W1257816276 @default.
- W4289766793 cites W1869168461 @default.
- W4289766793 cites W1916376402 @default.
- W4289766793 cites W1922761526 @default.
- W4289766793 cites W1969214179 @default.
- W4289766793 cites W1977556410 @default.
- W4289766793 cites W1979621528 @default.
- W4289766793 cites W1982559748 @default.
- W4289766793 cites W2001440241 @default.
- W4289766793 cites W2001594753 @default.
- W4289766793 cites W2013140980 @default.
- W4289766793 cites W2019024112 @default.
- W4289766793 cites W2024910441 @default.
- W4289766793 cites W2032412963 @default.
- W4289766793 cites W2032907044 @default.
- W4289766793 cites W2042963697 @default.
- W4289766793 cites W2086590074 @default.
- W4289766793 cites W2088255010 @default.
- W4289766793 cites W2102841173 @default.
- W4289766793 cites W2110621574 @default.
- W4289766793 cites W2117685245 @default.
- W4289766793 cites W2121200064 @default.
- W4289766793 cites W2130165425 @default.
- W4289766793 cites W2132424470 @default.
- W4289766793 cites W2137579532 @default.
- W4289766793 cites W2139696499 @default.
- W4289766793 cites W2161640774 @default.
- W4289766793 cites W2163484017 @default.
- W4289766793 cites W2163924214 @default.
- W4289766793 cites W2181052629 @default.
- W4289766793 cites W2182909544 @default.
- W4289766793 cites W2224298490 @default.
- W4289766793 cites W2255341175 @default.
- W4289766793 cites W2266617176 @default.
- W4289766793 cites W2285736983 @default.
- W4289766793 cites W2289116171 @default.
- W4289766793 cites W2289376408 @default.
- W4289766793 cites W2290197515 @default.
- W4289766793 cites W2319729657 @default.
- W4289766793 cites W2341396537 @default.
- W4289766793 cites W2514117783 @default.
- W4289766793 cites W2577061241 @default.
- W4289766793 cites W2611938025 @default.
- W4289766793 cites W2765320407 @default.
- W4289766793 cites W2767203848 @default.
- W4289766793 cites W2768525618 @default.
- W4289766793 cites W2790013227 @default.
- W4289766793 cites W2792064240 @default.
- W4289766793 cites W2801765526 @default.
- W4289766793 cites W2891841129 @default.
- W4289766793 cites W2902322959 @default.
- W4289766793 cites W2905209219 @default.
- W4289766793 cites W2908216433 @default.
- W4289766793 cites W2916342063 @default.
- W4289766793 cites W2920804134 @default.
- W4289766793 cites W2941065216 @default.
- W4289766793 cites W2942440036 @default.
- W4289766793 cites W2953712282 @default.
- W4289766793 cites W2954154947 @default.
- W4289766793 cites W2977103245 @default.
- W4289766793 cites W2983217361 @default.
- W4289766793 cites W3004760715 @default.
- W4289766793 cites W3030885973 @default.
- W4289766793 cites W3031867400 @default.
- W4289766793 cites W32875293 @default.
- W4289766793 cites W379802210 @default.
- W4289766793 cites W4256669726 @default.
- W4289766793 doi "https://doi.org/10.1080/10106049.2022.2110616" @default.
- W4289766793 hasPublicationYear "2022" @default.
- W4289766793 type Work @default.
- W4289766793 citedByCount "0" @default.
- W4289766793 crossrefType "journal-article" @default.
- W4289766793 hasAuthorship W4289766793A5001737240 @default.
- W4289766793 hasAuthorship W4289766793A5017070280 @default.
- W4289766793 hasAuthorship W4289766793A5025819441 @default.
- W4289766793 hasAuthorship W4289766793A5077307732 @default.
- W4289766793 hasBestOaLocation W42897667932 @default.
- W4289766793 hasConcept C100701293 @default.
- W4289766793 hasConcept C100970517 @default.
- W4289766793 hasConcept C114793014 @default.
- W4289766793 hasConcept C123157820 @default.
- W4289766793 hasConcept C127313418 @default.
- W4289766793 hasConcept C154261466 @default.
- W4289766793 hasConcept C187320778 @default.
- W4289766793 hasConcept C192943249 @default.
- W4289766793 hasConcept C205649164 @default.
- W4289766793 hasConcept C3527866 @default.
- W4289766793 hasConcept C39432304 @default.
- W4289766793 hasConcept C58640448 @default.