Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289774680> ?p ?o ?g. }
- W4289774680 abstract "O6-Methylguanine-DNA-methyltransferase (MGMT) promoter methylation was shown in many studies to be an important predictive biomarker for temozolomide (TMZ) resistance and poor progression-free survival in glioblastoma multiforme (GBM) patients. However, identifying the MGMT methylation status using molecular techniques remains challenging due to technical limitations, such as the inability to obtain tumor specimens, high prices for detection, and the high complexity of intralesional heterogeneity. To overcome these difficulties, we aimed to test the feasibility of using a novel radiomics-based machine learning (ML) model to preoperatively and noninvasively predict the MGMT methylation status. In this study, radiomics features extracted from multimodal images of GBM patients with annotated MGMT methylation status were downloaded from The Cancer Imaging Archive (TCIA) public database for retrospective analysis. The radiomics features extracted from multimodal images from magnetic resonance imaging (MRI) had undergone a two-stage feature selection method, including an eXtreme Gradient Boosting (XGBoost) feature selection model followed by a genetic algorithm (GA)-based wrapper model for extracting the most meaningful radiomics features for predictive purposes. The cross-validation results suggested that the GA-based wrapper model achieved the high performance with a sensitivity of 0.894, specificity of 0.966, and accuracy of 0.925 for predicting the MGMT methylation status in GBM. Application of the extracted GBM radiomics features on a low-grade glioma (LGG) dataset also achieved a sensitivity 0.780, specificity 0.620, and accuracy 0.750, indicating the potential of the selected radiomics features to be applied more widely on both low- and high-grade gliomas. The performance indicated that our model may potentially confer significant improvements in prognosis and treatment responses in GBM patients." @default.
- W4289774680 created "2022-08-04" @default.
- W4289774680 creator A5000455429 @default.
- W4289774680 creator A5025402688 @default.
- W4289774680 creator A5029628876 @default.
- W4289774680 creator A5031910204 @default.
- W4289774680 creator A5079433466 @default.
- W4289774680 date "2022-08-04" @default.
- W4289774680 modified "2023-10-10" @default.
- W4289774680 title "Improving MGMT methylation status prediction of glioblastoma through optimizing radiomics features using genetic algorithm-based machine learning approach" @default.
- W4289774680 cites W1415593923 @default.
- W4289774680 cites W149211460 @default.
- W4289774680 cites W1579863504 @default.
- W4289774680 cites W1970706614 @default.
- W4289774680 cites W1987054640 @default.
- W4289774680 cites W1996344481 @default.
- W4289774680 cites W2003304826 @default.
- W4289774680 cites W2005558571 @default.
- W4289774680 cites W2008011004 @default.
- W4289774680 cites W2009748510 @default.
- W4289774680 cites W2010511761 @default.
- W4289774680 cites W2016599848 @default.
- W4289774680 cites W2019090719 @default.
- W4289774680 cites W2035021866 @default.
- W4289774680 cites W2044465660 @default.
- W4289774680 cites W2071970335 @default.
- W4289774680 cites W2076045951 @default.
- W4289774680 cites W2082572214 @default.
- W4289774680 cites W2088317370 @default.
- W4289774680 cites W2090808267 @default.
- W4289774680 cites W2099698084 @default.
- W4289774680 cites W2104382292 @default.
- W4289774680 cites W2105100844 @default.
- W4289774680 cites W2109808436 @default.
- W4289774680 cites W2119440128 @default.
- W4289774680 cites W2125687380 @default.
- W4289774680 cites W2128739912 @default.
- W4289774680 cites W2132549764 @default.
- W4289774680 cites W2135558784 @default.
- W4289774680 cites W2221563957 @default.
- W4289774680 cites W2367516440 @default.
- W4289774680 cites W2519238003 @default.
- W4289774680 cites W2541358162 @default.
- W4289774680 cites W2565978524 @default.
- W4289774680 cites W2591460579 @default.
- W4289774680 cites W2611746820 @default.
- W4289774680 cites W2751069891 @default.
- W4289774680 cites W2751538714 @default.
- W4289774680 cites W2755791336 @default.
- W4289774680 cites W2769012178 @default.
- W4289774680 cites W2792090783 @default.
- W4289774680 cites W2807938045 @default.
- W4289774680 cites W2883201428 @default.
- W4289774680 cites W2953404953 @default.
- W4289774680 cites W2963073866 @default.
- W4289774680 cites W2969320815 @default.
- W4289774680 cites W2975798645 @default.
- W4289774680 cites W2979673604 @default.
- W4289774680 cites W2980380170 @default.
- W4289774680 cites W3023424417 @default.
- W4289774680 cites W3033869535 @default.
- W4289774680 cites W3085973060 @default.
- W4289774680 cites W3103145119 @default.
- W4289774680 cites W4240387376 @default.
- W4289774680 doi "https://doi.org/10.1038/s41598-022-17707-w" @default.
- W4289774680 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35927323" @default.
- W4289774680 hasPublicationYear "2022" @default.
- W4289774680 type Work @default.
- W4289774680 citedByCount "7" @default.
- W4289774680 countsByYear W42897746802022 @default.
- W4289774680 countsByYear W42897746802023 @default.
- W4289774680 crossrefType "journal-article" @default.
- W4289774680 hasAuthorship W4289774680A5000455429 @default.
- W4289774680 hasAuthorship W4289774680A5025402688 @default.
- W4289774680 hasAuthorship W4289774680A5029628876 @default.
- W4289774680 hasAuthorship W4289774680A5031910204 @default.
- W4289774680 hasAuthorship W4289774680A5079433466 @default.
- W4289774680 hasBestOaLocation W42897746801 @default.
- W4289774680 hasConcept C104317684 @default.
- W4289774680 hasConcept C119857082 @default.
- W4289774680 hasConcept C126838900 @default.
- W4289774680 hasConcept C143409427 @default.
- W4289774680 hasConcept C143998085 @default.
- W4289774680 hasConcept C148483581 @default.
- W4289774680 hasConcept C150194340 @default.
- W4289774680 hasConcept C154945302 @default.
- W4289774680 hasConcept C163500349 @default.
- W4289774680 hasConcept C190727270 @default.
- W4289774680 hasConcept C2776194525 @default.
- W4289774680 hasConcept C2777389519 @default.
- W4289774680 hasConcept C2778227246 @default.
- W4289774680 hasConcept C2778559731 @default.
- W4289774680 hasConcept C2779527866 @default.
- W4289774680 hasConcept C2781197716 @default.
- W4289774680 hasConcept C33288867 @default.
- W4289774680 hasConcept C41008148 @default.
- W4289774680 hasConcept C502942594 @default.
- W4289774680 hasConcept C54355233 @default.
- W4289774680 hasConcept C60644358 @default.
- W4289774680 hasConcept C71924100 @default.