Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289779493> ?p ?o ?g. }
- W4289779493 endingPage "105004" @default.
- W4289779493 startingPage "105004" @default.
- W4289779493 abstract "This work presents a surrogate model-based Bayesian model updating (BMU) approach for automated damage identification of large-scale structures, which outperforms methods currently available in the literature by effectively solving the real-time damage identification challenge. The computational difficulties involved in Bayesian inference using intensive numerical models are circumvented by implementing a high-fidelity surrogate model and an adaptive Markov Chain Monte Carlo (MCMC) algorithm. The developed surrogate model combines adaptive sparse polynomial chaos expansion (PCE) and Kriging meta-modelling. The optimal order of the polynomials in the PCE is automatically identified by a model selection technique for sparse linear models, the least-angle regression (LAR) algorithm. Then, the optimal PCE is inserted into a Kriging predictor as the trend term, while the stochastic term is fitted through a global optimization algorithm. Afterwards, the surrogate model bypassing the original numerical model is used for BMU exploiting monitoring data extracted from continuous ambient vibration measurements. The computational demands of the MCMC algorithm are kept minimal by implementing an adaptive Metropolis sampling with delayed rejection (DRAM). The effectiveness of the proposed methodology is demonstrated through three case studies: an analytical benchmark; a planar truss structure; and a real case study of an instrumented historical tower, the Sciri Tower in Italy. The presented results demonstrate that the proposed BMU approach is compatible with real-time Structural Health Monitoring (SHM), providing promising evidence for the development of digital twins with superior probabilistic damage identification capabilities." @default.
- W4289779493 created "2022-08-04" @default.
- W4289779493 creator A5001232691 @default.
- W4289779493 creator A5016492145 @default.
- W4289779493 date "2022-11-01" @default.
- W4289779493 modified "2023-10-16" @default.
- W4289779493 title "Real-time Bayesian damage identification enabled by sparse PCE-Kriging meta-modelling for continuous SHM of large-scale civil engineering structures" @default.
- W4289779493 cites W1591760165 @default.
- W4289779493 cites W1859665057 @default.
- W4289779493 cites W1979113887 @default.
- W4289779493 cites W1980552216 @default.
- W4289779493 cites W2010737928 @default.
- W4289779493 cites W2018159038 @default.
- W4289779493 cites W2026853629 @default.
- W4289779493 cites W2045355467 @default.
- W4289779493 cites W2057412383 @default.
- W4289779493 cites W2063978378 @default.
- W4289779493 cites W2071544114 @default.
- W4289779493 cites W2072604448 @default.
- W4289779493 cites W2083415217 @default.
- W4289779493 cites W2115540587 @default.
- W4289779493 cites W2256942714 @default.
- W4289779493 cites W2321957512 @default.
- W4289779493 cites W2341233470 @default.
- W4289779493 cites W2516809051 @default.
- W4289779493 cites W2578734600 @default.
- W4289779493 cites W2584742913 @default.
- W4289779493 cites W2588361551 @default.
- W4289779493 cites W2591510094 @default.
- W4289779493 cites W2753462150 @default.
- W4289779493 cites W2767028470 @default.
- W4289779493 cites W2770889173 @default.
- W4289779493 cites W2783055757 @default.
- W4289779493 cites W2792679127 @default.
- W4289779493 cites W2809804301 @default.
- W4289779493 cites W2901306041 @default.
- W4289779493 cites W2906576198 @default.
- W4289779493 cites W2963889731 @default.
- W4289779493 cites W2969604954 @default.
- W4289779493 cites W3002280017 @default.
- W4289779493 cites W3005098636 @default.
- W4289779493 cites W3009599308 @default.
- W4289779493 cites W3014806367 @default.
- W4289779493 cites W3021419302 @default.
- W4289779493 cites W3033480956 @default.
- W4289779493 cites W3088634102 @default.
- W4289779493 cites W3091290410 @default.
- W4289779493 cites W3147567889 @default.
- W4289779493 cites W3165958471 @default.
- W4289779493 cites W3189366907 @default.
- W4289779493 cites W3191493958 @default.
- W4289779493 cites W3198331430 @default.
- W4289779493 cites W3198525145 @default.
- W4289779493 cites W3199513339 @default.
- W4289779493 cites W3201902915 @default.
- W4289779493 cites W4206385156 @default.
- W4289779493 cites W4206909109 @default.
- W4289779493 cites W4210329637 @default.
- W4289779493 cites W4225776929 @default.
- W4289779493 doi "https://doi.org/10.1016/j.jobe.2022.105004" @default.
- W4289779493 hasPublicationYear "2022" @default.
- W4289779493 type Work @default.
- W4289779493 citedByCount "3" @default.
- W4289779493 countsByYear W42897794932022 @default.
- W4289779493 countsByYear W42897794932023 @default.
- W4289779493 crossrefType "journal-article" @default.
- W4289779493 hasAuthorship W4289779493A5001232691 @default.
- W4289779493 hasAuthorship W4289779493A5016492145 @default.
- W4289779493 hasConcept C107673813 @default.
- W4289779493 hasConcept C111350023 @default.
- W4289779493 hasConcept C11413529 @default.
- W4289779493 hasConcept C119857082 @default.
- W4289779493 hasConcept C126255220 @default.
- W4289779493 hasConcept C127413603 @default.
- W4289779493 hasConcept C131675550 @default.
- W4289779493 hasConcept C154945302 @default.
- W4289779493 hasConcept C160234255 @default.
- W4289779493 hasConcept C2776247918 @default.
- W4289779493 hasConcept C32230216 @default.
- W4289779493 hasConcept C33923547 @default.
- W4289779493 hasConcept C41008148 @default.
- W4289779493 hasConcept C66938386 @default.
- W4289779493 hasConcept C81692654 @default.
- W4289779493 hasConceptScore W4289779493C107673813 @default.
- W4289779493 hasConceptScore W4289779493C111350023 @default.
- W4289779493 hasConceptScore W4289779493C11413529 @default.
- W4289779493 hasConceptScore W4289779493C119857082 @default.
- W4289779493 hasConceptScore W4289779493C126255220 @default.
- W4289779493 hasConceptScore W4289779493C127413603 @default.
- W4289779493 hasConceptScore W4289779493C131675550 @default.
- W4289779493 hasConceptScore W4289779493C154945302 @default.
- W4289779493 hasConceptScore W4289779493C160234255 @default.
- W4289779493 hasConceptScore W4289779493C2776247918 @default.
- W4289779493 hasConceptScore W4289779493C32230216 @default.
- W4289779493 hasConceptScore W4289779493C33923547 @default.
- W4289779493 hasConceptScore W4289779493C41008148 @default.
- W4289779493 hasConceptScore W4289779493C66938386 @default.
- W4289779493 hasConceptScore W4289779493C81692654 @default.