Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289785320> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4289785320 abstract "Due to high mutation rates, COVID-19 evolved rapidly, and several variants such as Alpha, Gamma, Delta, Beta, and Omicron emerged with altered viral properties like the severity of the disease caused, transmission rates, etc. These variants burdened the medical systems worldwide and created a massive impact on the world economy as each had to be studied and dealt with in its specific ways. Unsupervised machine learning methods have the ability to compress, characterize, and visualize unlabelled data. In this paper, we present a framework that utilizes unsupervised machine learning methods to discriminate and visualize the associations between major COVID-19 variants based on their genome sequences. These methods comprise a combination of selected dimensionality reduction and clustering techniques. The framework processes the RNA sequences by performing a k-mer analysis on the data and then compares the results from different dimensionality reduction methods including: Principal Component Analysis (PCA), t-Distributed Stochastic Neighbour Embedding (t-SNE), and Uniform Manifold Approximation Projection (UMAP). Our framework also employs agglomerative hierarchical clustering to visualize the mutational differences among major variants of concern and country-wise mutational differences for a particular variant (Delta and Omicron) using dendrograms. We also provide country-wise mutational differences for selected variants via dendrograms. We conclude that the proposed framework can effectively distinguish between the major variants and hence can be used for the identification of emerging variants in the future." @default.
- W4289785320 created "2022-08-04" @default.
- W4289785320 creator A5000548606 @default.
- W4289785320 creator A5043246042 @default.
- W4289785320 creator A5066470229 @default.
- W4289785320 creator A5084085113 @default.
- W4289785320 date "2022-08-01" @default.
- W4289785320 modified "2023-09-27" @default.
- W4289785320 title "Unsupervised machine learning framework for discriminating major variants of concern during COVID-19" @default.
- W4289785320 doi "https://doi.org/10.48550/arxiv.2208.01439" @default.
- W4289785320 hasPublicationYear "2022" @default.
- W4289785320 type Work @default.
- W4289785320 citedByCount "0" @default.
- W4289785320 crossrefType "posted-content" @default.
- W4289785320 hasAuthorship W4289785320A5000548606 @default.
- W4289785320 hasAuthorship W4289785320A5043246042 @default.
- W4289785320 hasAuthorship W4289785320A5066470229 @default.
- W4289785320 hasAuthorship W4289785320A5084085113 @default.
- W4289785320 hasBestOaLocation W42897853201 @default.
- W4289785320 hasConcept C104317684 @default.
- W4289785320 hasConcept C111030470 @default.
- W4289785320 hasConcept C116834253 @default.
- W4289785320 hasConcept C119857082 @default.
- W4289785320 hasConcept C141231307 @default.
- W4289785320 hasConcept C142724271 @default.
- W4289785320 hasConcept C151876577 @default.
- W4289785320 hasConcept C153180895 @default.
- W4289785320 hasConcept C154945302 @default.
- W4289785320 hasConcept C27438332 @default.
- W4289785320 hasConcept C2779134260 @default.
- W4289785320 hasConcept C3008058167 @default.
- W4289785320 hasConcept C41008148 @default.
- W4289785320 hasConcept C524204448 @default.
- W4289785320 hasConcept C54355233 @default.
- W4289785320 hasConcept C59822182 @default.
- W4289785320 hasConcept C70518039 @default.
- W4289785320 hasConcept C70721500 @default.
- W4289785320 hasConcept C71924100 @default.
- W4289785320 hasConcept C73555534 @default.
- W4289785320 hasConcept C8038995 @default.
- W4289785320 hasConcept C86803240 @default.
- W4289785320 hasConcept C92835128 @default.
- W4289785320 hasConceptScore W4289785320C104317684 @default.
- W4289785320 hasConceptScore W4289785320C111030470 @default.
- W4289785320 hasConceptScore W4289785320C116834253 @default.
- W4289785320 hasConceptScore W4289785320C119857082 @default.
- W4289785320 hasConceptScore W4289785320C141231307 @default.
- W4289785320 hasConceptScore W4289785320C142724271 @default.
- W4289785320 hasConceptScore W4289785320C151876577 @default.
- W4289785320 hasConceptScore W4289785320C153180895 @default.
- W4289785320 hasConceptScore W4289785320C154945302 @default.
- W4289785320 hasConceptScore W4289785320C27438332 @default.
- W4289785320 hasConceptScore W4289785320C2779134260 @default.
- W4289785320 hasConceptScore W4289785320C3008058167 @default.
- W4289785320 hasConceptScore W4289785320C41008148 @default.
- W4289785320 hasConceptScore W4289785320C524204448 @default.
- W4289785320 hasConceptScore W4289785320C54355233 @default.
- W4289785320 hasConceptScore W4289785320C59822182 @default.
- W4289785320 hasConceptScore W4289785320C70518039 @default.
- W4289785320 hasConceptScore W4289785320C70721500 @default.
- W4289785320 hasConceptScore W4289785320C71924100 @default.
- W4289785320 hasConceptScore W4289785320C73555534 @default.
- W4289785320 hasConceptScore W4289785320C8038995 @default.
- W4289785320 hasConceptScore W4289785320C86803240 @default.
- W4289785320 hasConceptScore W4289785320C92835128 @default.
- W4289785320 hasLocation W42897853201 @default.
- W4289785320 hasOpenAccess W4289785320 @default.
- W4289785320 hasPrimaryLocation W42897853201 @default.
- W4289785320 hasRelatedWork W1489327846 @default.
- W4289785320 hasRelatedWork W1520675566 @default.
- W4289785320 hasRelatedWork W198500362 @default.
- W4289785320 hasRelatedWork W2082691086 @default.
- W4289785320 hasRelatedWork W2164993107 @default.
- W4289785320 hasRelatedWork W2166056814 @default.
- W4289785320 hasRelatedWork W3018841469 @default.
- W4289785320 hasRelatedWork W3110687914 @default.
- W4289785320 hasRelatedWork W4289785320 @default.
- W4289785320 hasRelatedWork W2087197267 @default.
- W4289785320 isParatext "false" @default.
- W4289785320 isRetracted "false" @default.
- W4289785320 workType "article" @default.