Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289792178> ?p ?o ?g. }
- W4289792178 endingPage "119688" @default.
- W4289792178 startingPage "119688" @default.
- W4289792178 abstract "Demand response improves grid security by adjusting the flexibility of consumers meanwhile maintaining their demand–supply balance in real-time. With the large-scale deployment of distributed digital communication technologies and advanced metering infrastructures, data-driven approaches such as multi-agent reinforcement learning (MARL) are being widely employed to solve demand response problems. Nevertheless, the massive interaction of data inside and outside the demand response management system may lead to severe threats from the perspective of cyber-attacks. The cyber security requirements of MARL-based demand response problems are less discussed in the existing studies. To this end, this paper proposes a robust adversarial multi-agent reinforcement learning framework for demand response (RAMARL-DR) with an enhanced resilience against adversarial attacks. In particular, the proposed RAMARL-DR first constructs an adversary agent that aims to cause the worst-case performance via formulating an adversarial attack; and then adopts periodic alternating robust adversarial training scenarios with the optimal adversary aiming to diminish the severe impacts induced by adversarial attacks. Case studies are conducted based on an OpenAI Gym environment CityLearn, which provides a standard evaluation platform of MARL algorithms for demand response problems. Empirical results indicate that the MARL-based demand response management system is vulnerable when the adversary agent occurs, and its performance can be significantly improved after periodic alternating robust adversarial training. It can be found that the adversary agent can result in a 41.43% higher metric value of Ramping than the no adversary case, whereas the proposed RAMARL-DR can significantly enhance the system resilience with an approximately 38.85% reduction in the ramping of net demand." @default.
- W4289792178 created "2022-08-04" @default.
- W4289792178 creator A5003537739 @default.
- W4289792178 creator A5061759570 @default.
- W4289792178 creator A5079378336 @default.
- W4289792178 date "2022-10-01" @default.
- W4289792178 modified "2023-10-17" @default.
- W4289792178 title "Resilience enhancement of multi-agent reinforcement learning-based demand response against adversarial attacks" @default.
- W4289792178 cites W1976883400 @default.
- W4289792178 cites W2001045363 @default.
- W4289792178 cites W2038651258 @default.
- W4289792178 cites W2048092462 @default.
- W4289792178 cites W2091270719 @default.
- W4289792178 cites W2296896507 @default.
- W4289792178 cites W2549678235 @default.
- W4289792178 cites W2568903799 @default.
- W4289792178 cites W2731879999 @default.
- W4289792178 cites W2774581802 @default.
- W4289792178 cites W2802303202 @default.
- W4289792178 cites W2901645090 @default.
- W4289792178 cites W2904635416 @default.
- W4289792178 cites W2914396823 @default.
- W4289792178 cites W2926295867 @default.
- W4289792178 cites W2982984621 @default.
- W4289792178 cites W3000632562 @default.
- W4289792178 cites W3003290394 @default.
- W4289792178 cites W3040994746 @default.
- W4289792178 cites W3095810316 @default.
- W4289792178 cites W3106664044 @default.
- W4289792178 cites W3135527034 @default.
- W4289792178 cites W3153079815 @default.
- W4289792178 cites W3199271324 @default.
- W4289792178 cites W4205760645 @default.
- W4289792178 doi "https://doi.org/10.1016/j.apenergy.2022.119688" @default.
- W4289792178 hasPublicationYear "2022" @default.
- W4289792178 type Work @default.
- W4289792178 citedByCount "5" @default.
- W4289792178 countsByYear W42897921782023 @default.
- W4289792178 crossrefType "journal-article" @default.
- W4289792178 hasAuthorship W4289792178A5003537739 @default.
- W4289792178 hasAuthorship W4289792178A5061759570 @default.
- W4289792178 hasAuthorship W4289792178A5079378336 @default.
- W4289792178 hasConcept C105339364 @default.
- W4289792178 hasConcept C10558101 @default.
- W4289792178 hasConcept C105795698 @default.
- W4289792178 hasConcept C111919701 @default.
- W4289792178 hasConcept C119599485 @default.
- W4289792178 hasConcept C120314980 @default.
- W4289792178 hasConcept C121332964 @default.
- W4289792178 hasConcept C127413603 @default.
- W4289792178 hasConcept C154945302 @default.
- W4289792178 hasConcept C206658404 @default.
- W4289792178 hasConcept C2779438525 @default.
- W4289792178 hasConcept C2779585090 @default.
- W4289792178 hasConcept C2780598303 @default.
- W4289792178 hasConcept C33923547 @default.
- W4289792178 hasConcept C37736160 @default.
- W4289792178 hasConcept C38652104 @default.
- W4289792178 hasConcept C41008148 @default.
- W4289792178 hasConcept C41065033 @default.
- W4289792178 hasConcept C97355855 @default.
- W4289792178 hasConcept C97541855 @default.
- W4289792178 hasConceptScore W4289792178C105339364 @default.
- W4289792178 hasConceptScore W4289792178C10558101 @default.
- W4289792178 hasConceptScore W4289792178C105795698 @default.
- W4289792178 hasConceptScore W4289792178C111919701 @default.
- W4289792178 hasConceptScore W4289792178C119599485 @default.
- W4289792178 hasConceptScore W4289792178C120314980 @default.
- W4289792178 hasConceptScore W4289792178C121332964 @default.
- W4289792178 hasConceptScore W4289792178C127413603 @default.
- W4289792178 hasConceptScore W4289792178C154945302 @default.
- W4289792178 hasConceptScore W4289792178C206658404 @default.
- W4289792178 hasConceptScore W4289792178C2779438525 @default.
- W4289792178 hasConceptScore W4289792178C2779585090 @default.
- W4289792178 hasConceptScore W4289792178C2780598303 @default.
- W4289792178 hasConceptScore W4289792178C33923547 @default.
- W4289792178 hasConceptScore W4289792178C37736160 @default.
- W4289792178 hasConceptScore W4289792178C38652104 @default.
- W4289792178 hasConceptScore W4289792178C41008148 @default.
- W4289792178 hasConceptScore W4289792178C41065033 @default.
- W4289792178 hasConceptScore W4289792178C97355855 @default.
- W4289792178 hasConceptScore W4289792178C97541855 @default.
- W4289792178 hasFunder F4320321001 @default.
- W4289792178 hasLocation W42897921781 @default.
- W4289792178 hasOpenAccess W4289792178 @default.
- W4289792178 hasPrimaryLocation W42897921781 @default.
- W4289792178 hasRelatedWork W1842704946 @default.
- W4289792178 hasRelatedWork W2528881248 @default.
- W4289792178 hasRelatedWork W2604394466 @default.
- W4289792178 hasRelatedWork W2941205169 @default.
- W4289792178 hasRelatedWork W2952603690 @default.
- W4289792178 hasRelatedWork W2955689724 @default.
- W4289792178 hasRelatedWork W2997293639 @default.
- W4289792178 hasRelatedWork W3176644864 @default.
- W4289792178 hasRelatedWork W4244081960 @default.
- W4289792178 hasRelatedWork W4362599004 @default.
- W4289792178 hasVolume "324" @default.
- W4289792178 isParatext "false" @default.