Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289792227> ?p ?o ?g. }
- W4289792227 endingPage "119775" @default.
- W4289792227 startingPage "119775" @default.
- W4289792227 abstract "Artificial intelligence (AI) has become the future trend for prediction after the data is provided to machine learning. This study uses data analysis to optimize the experiment, find the best-operating conditions, and obtain the maximum glucose concentration for bioethanol production where wet torrefaction (WT) is used to perform biomass pretreatment. Forty-nine (49) sets of data are split into training and test data in the ratio of 7:4. Glucose concentrations from five different feedstocks are trained and predicted using a neural network (NN) and multivariate adaptive regression splines (MARS), followed by a decision tree (DT) to predict the classification of the materials. The predicted NN results are better than MARS, so the NN training is used for the glucose prediction along with the Box-Behnken design (BBD) experiment. The BBD experiment is performed with the parameters of temperature (170, 175, and 180 °C), reaction time (10, 20, and 30 min), and sulfuric acid concentration (0, 0.01, and 0.02 M) for the WT of sorghum distillery residue. By adding the BBD experimental data in NN training, the fit quality of the model is improved to 99.78 %. The NN model predicts that the highest glucose concentration occurring at the optimal conditions (i.e., 173 °C, 10.5 min, and 0.02 M sulfuric acid) is 15.216 g/L with a relative error of 5.55 % between the prediction and experiment. These resuts indicate that NN is an appropriate approach to predicting glucose production from biomass WT for bioethanol production. Additionally, the analysis of variance (ANOVA) evaluation shows that the order of the vital parameter for glucose concentration is sulfuric acid, followed by reaction time and temperature." @default.
- W4289792227 created "2022-08-04" @default.
- W4289792227 creator A5013722040 @default.
- W4289792227 creator A5027985117 @default.
- W4289792227 creator A5048616682 @default.
- W4289792227 creator A5057352058 @default.
- W4289792227 creator A5058161037 @default.
- W4289792227 creator A5067625657 @default.
- W4289792227 creator A5070077232 @default.
- W4289792227 creator A5076854888 @default.
- W4289792227 date "2022-10-01" @default.
- W4289792227 modified "2023-10-15" @default.
- W4289792227 title "Forecast of glucose production from biomass wet torrefaction using statistical approach along with multivariate adaptive regression splines, neural network and decision tree" @default.
- W4289792227 cites W130042863 @default.
- W4289792227 cites W1609810996 @default.
- W4289792227 cites W1969067576 @default.
- W4289792227 cites W1974166884 @default.
- W4289792227 cites W1974614011 @default.
- W4289792227 cites W1975075722 @default.
- W4289792227 cites W1976247623 @default.
- W4289792227 cites W1983072551 @default.
- W4289792227 cites W1998442441 @default.
- W4289792227 cites W2003335961 @default.
- W4289792227 cites W2004958771 @default.
- W4289792227 cites W2006553863 @default.
- W4289792227 cites W2027966927 @default.
- W4289792227 cites W2029871071 @default.
- W4289792227 cites W2033705779 @default.
- W4289792227 cites W2034654759 @default.
- W4289792227 cites W2037262314 @default.
- W4289792227 cites W2046495385 @default.
- W4289792227 cites W2048489440 @default.
- W4289792227 cites W2057396845 @default.
- W4289792227 cites W2063785563 @default.
- W4289792227 cites W2064813997 @default.
- W4289792227 cites W2065644533 @default.
- W4289792227 cites W2070495282 @default.
- W4289792227 cites W2070638918 @default.
- W4289792227 cites W2075891641 @default.
- W4289792227 cites W2079532165 @default.
- W4289792227 cites W2080562691 @default.
- W4289792227 cites W2089893770 @default.
- W4289792227 cites W2090398894 @default.
- W4289792227 cites W2109574129 @default.
- W4289792227 cites W2111547563 @default.
- W4289792227 cites W2113807598 @default.
- W4289792227 cites W2120160157 @default.
- W4289792227 cites W2123162799 @default.
- W4289792227 cites W2124861565 @default.
- W4289792227 cites W2140419408 @default.
- W4289792227 cites W2141975087 @default.
- W4289792227 cites W2153410473 @default.
- W4289792227 cites W2179733799 @default.
- W4289792227 cites W2307028049 @default.
- W4289792227 cites W2394932179 @default.
- W4289792227 cites W2506144901 @default.
- W4289792227 cites W2562977502 @default.
- W4289792227 cites W2737005484 @default.
- W4289792227 cites W2772433304 @default.
- W4289792227 cites W2912275277 @default.
- W4289792227 cites W2921084929 @default.
- W4289792227 cites W2944604439 @default.
- W4289792227 cites W2971136000 @default.
- W4289792227 cites W2977422509 @default.
- W4289792227 cites W2981098284 @default.
- W4289792227 cites W2998533243 @default.
- W4289792227 cites W3004439141 @default.
- W4289792227 cites W3012352882 @default.
- W4289792227 cites W3014440660 @default.
- W4289792227 cites W3015173794 @default.
- W4289792227 cites W3020258514 @default.
- W4289792227 cites W3024312317 @default.
- W4289792227 cites W3037269356 @default.
- W4289792227 cites W3049684429 @default.
- W4289792227 cites W3049706639 @default.
- W4289792227 cites W3082004869 @default.
- W4289792227 cites W3083180889 @default.
- W4289792227 cites W3087305825 @default.
- W4289792227 cites W3097532599 @default.
- W4289792227 cites W3114589555 @default.
- W4289792227 cites W3177371468 @default.
- W4289792227 cites W3183646572 @default.
- W4289792227 cites W3198559663 @default.
- W4289792227 cites W3206630389 @default.
- W4289792227 cites W4210522753 @default.
- W4289792227 cites W4220805136 @default.
- W4289792227 cites W4293563853 @default.
- W4289792227 cites W4294570726 @default.
- W4289792227 doi "https://doi.org/10.1016/j.apenergy.2022.119775" @default.
- W4289792227 hasPublicationYear "2022" @default.
- W4289792227 type Work @default.
- W4289792227 citedByCount "17" @default.
- W4289792227 countsByYear W42897922272022 @default.
- W4289792227 countsByYear W42897922272023 @default.
- W4289792227 crossrefType "journal-article" @default.
- W4289792227 hasAuthorship W4289792227A5013722040 @default.
- W4289792227 hasAuthorship W4289792227A5027985117 @default.
- W4289792227 hasAuthorship W4289792227A5048616682 @default.