Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289794023> ?p ?o ?g. }
- W4289794023 endingPage "2290" @default.
- W4289794023 startingPage "2280" @default.
- W4289794023 abstract "ConspectusThis Account describes the manner whereby nature controls the Fenton-type reaction of O–O homolysis of hydrogen peroxide and harnesses it to carry out various useful oxidative transformations in metalloenzymes. H2O2 acts as the cosubstrate for the heme-dependent peroxidases, P450BM3, P450SPα, P450BSβ, and the P450 decarboxylase OleT, as well as the nonheme enzymes HppE and the copper-dependent lytic polysaccharide monooxygenases (LPMOs). Whereas heme peroxidases use the Poulos-Kraut heterolytic mechanism for H2O2 activation, some heme enzymes prefer the alternative Fenton-type mechanism, which produces •OH radical intermediates. The fate of the •OH radical is controlled by the protein environment, using tight H-bonding networks around H2O2. The so-generated •OH radical is constrained by the surrounding H-bonding interactions, the orientation of which is targeted to perform H-abstraction from the Fe(III)–OH group and thereby leading to the formation of the active species, called Compound I (Cpd I), Por+•Fe(IV)═O, which performs oxidation of the substrate. Alternatively, for the nonheme HppE enzyme, the O–O homolysis catalyzed by the resting state Fe(II) generates an Fe(III)–OH species that effectively constrains the •OH radical species by a tight H-bonding network. The so-formed H-bonded •OH radical acts directly as the oxidant, since it is oriented to perform H-abstraction from the C–H bond of the substrate (S)-2-HPP. The Fenton-type H2O2 activation is strongly suggested by computations to occur also in copper-dependent LPMOs and pMMO. In LPMOs, the Cu(I)-catalyzed O–O homolysis of the H2O2 cosubstrate generates an •OH radical that abstracts a hydrogen atom from Cu(II)–OH and forms thereby the active species of the enzyme, Cu(II)-O•. Such Fenton-type O–O activation can be shared by both the O2-dependent activations of LPMOs and pMMOs, in which the O2 cosubstrate may be reduced to H2O2 by external reductants. Our studies show that, generally, the H2O2 activation is highly dependent on the protein environment, as well as on the presence/absence of substrates. Since H2O2 is a highly flexible and hydrophilic molecule, the absence of suitable substrates may lead to unproductive binding or even to the release of H2O2 from the active site, as has been suggested in P450cam and LPMOs, whereas the presence of the substrate seems to play a role in steering a Fenton-type H2O2 activation. In the absence of a substrate, the hydrophilic active site of P450BM3 disfavors the binding and activation of H2O2 and protects thereby the enzyme from the damage by the Fenton reaction. Due to the distinct coordination and reaction environment, the Fenton-type H2O2 activation mechanism by enzymes differs from the reaction in synthetic systems. In nonenzymatic reactions, the H-bonding networks are quite dynamic and flexible and the reactivity of H2O2 is not strategically constrained as in the enzymatic environment. As such, our Account describes the controlled Fenton-type mechanism in metalloenzymes, and the role of the protein environment in constraining the •OH radical against oxidative damage, while directing it to perform useful oxidative transformations." @default.
- W4289794023 created "2022-08-04" @default.
- W4289794023 creator A5016622484 @default.
- W4289794023 creator A5026786226 @default.
- W4289794023 creator A5048633322 @default.
- W4289794023 creator A5081831378 @default.
- W4289794023 creator A5091278358 @default.
- W4289794023 date "2022-08-04" @default.
- W4289794023 modified "2023-10-18" @default.
- W4289794023 title "How Do Metalloproteins Tame the Fenton Reaction and Utilize •OH Radicals in Constructive Manners?" @default.
- W4289794023 cites W1578742674 @default.
- W4289794023 cites W1965436611 @default.
- W4289794023 cites W1981702588 @default.
- W4289794023 cites W1993747047 @default.
- W4289794023 cites W1994781489 @default.
- W4289794023 cites W2004283265 @default.
- W4289794023 cites W2004524059 @default.
- W4289794023 cites W2006361938 @default.
- W4289794023 cites W2009317764 @default.
- W4289794023 cites W2018292851 @default.
- W4289794023 cites W2021406372 @default.
- W4289794023 cites W2022086508 @default.
- W4289794023 cites W2029181830 @default.
- W4289794023 cites W2032087185 @default.
- W4289794023 cites W2047784574 @default.
- W4289794023 cites W2049557754 @default.
- W4289794023 cites W2061017523 @default.
- W4289794023 cites W2064013442 @default.
- W4289794023 cites W2083630420 @default.
- W4289794023 cites W2087948449 @default.
- W4289794023 cites W2106953389 @default.
- W4289794023 cites W2113248394 @default.
- W4289794023 cites W2114273430 @default.
- W4289794023 cites W2164873992 @default.
- W4289794023 cites W2313035794 @default.
- W4289794023 cites W2317873538 @default.
- W4289794023 cites W2413785607 @default.
- W4289794023 cites W2441628252 @default.
- W4289794023 cites W2746397541 @default.
- W4289794023 cites W2778341989 @default.
- W4289794023 cites W2779315858 @default.
- W4289794023 cites W2782674965 @default.
- W4289794023 cites W2783983658 @default.
- W4289794023 cites W2793846302 @default.
- W4289794023 cites W2804420022 @default.
- W4289794023 cites W2885883963 @default.
- W4289794023 cites W2902046052 @default.
- W4289794023 cites W2941961750 @default.
- W4289794023 cites W2947497124 @default.
- W4289794023 cites W2973097774 @default.
- W4289794023 cites W2990644904 @default.
- W4289794023 cites W3003664808 @default.
- W4289794023 cites W3025851418 @default.
- W4289794023 cites W3048412391 @default.
- W4289794023 cites W3093427744 @default.
- W4289794023 cites W3123682060 @default.
- W4289794023 cites W3138762026 @default.
- W4289794023 cites W3141968549 @default.
- W4289794023 cites W3169592085 @default.
- W4289794023 cites W3181241636 @default.
- W4289794023 cites W3184499212 @default.
- W4289794023 cites W3199576082 @default.
- W4289794023 cites W3209042872 @default.
- W4289794023 cites W3209965060 @default.
- W4289794023 cites W384344890 @default.
- W4289794023 cites W409854155 @default.
- W4289794023 cites W4214626680 @default.
- W4289794023 cites W4220793563 @default.
- W4289794023 cites W4238420766 @default.
- W4289794023 doi "https://doi.org/10.1021/acs.accounts.2c00304" @default.
- W4289794023 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35926175" @default.
- W4289794023 hasPublicationYear "2022" @default.
- W4289794023 type Work @default.
- W4289794023 citedByCount "10" @default.
- W4289794023 countsByYear W42897940232022 @default.
- W4289794023 countsByYear W42897940232023 @default.
- W4289794023 crossrefType "journal-article" @default.
- W4289794023 hasAuthorship W4289794023A5016622484 @default.
- W4289794023 hasAuthorship W4289794023A5026786226 @default.
- W4289794023 hasAuthorship W4289794023A5048633322 @default.
- W4289794023 hasAuthorship W4289794023A5081831378 @default.
- W4289794023 hasAuthorship W4289794023A5091278358 @default.
- W4289794023 hasConcept C111368507 @default.
- W4289794023 hasConcept C127313418 @default.
- W4289794023 hasConcept C13002179 @default.
- W4289794023 hasConcept C139066938 @default.
- W4289794023 hasConcept C161790260 @default.
- W4289794023 hasConcept C162008176 @default.
- W4289794023 hasConcept C175689099 @default.
- W4289794023 hasConcept C178790620 @default.
- W4289794023 hasConcept C181199279 @default.
- W4289794023 hasConcept C185592680 @default.
- W4289794023 hasConcept C2776217839 @default.
- W4289794023 hasConcept C2776778087 @default.
- W4289794023 hasConcept C2777289219 @default.
- W4289794023 hasConcept C2781048764 @default.
- W4289794023 hasConcept C2781109383 @default.
- W4289794023 hasConcept C44578547 @default.