Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289821414> ?p ?o ?g. }
- W4289821414 endingPage "80666" @default.
- W4289821414 startingPage "80651" @default.
- W4289821414 abstract "Nowadays, both predictive and descriptive modelling play a key role in decision-making processes in almost every branch of activity. In this article we are introducing <i>IntelliDaM</i>, a generic machine learning-based framework useful for improving the performance of data mining tasks and subsequently enhancing decision-making processes. Through its components designed for feature analysis, unsupervised and supervised learning-based data mining, <i>IntelliDaM</i> facilitates hidden knowledge discovery from data. Intensive research has been conducted in the field of <i>educational data mining</i>, as education institutions are interested in constantly adapting their educational programs to the needs of society by improving the quality of managerial decisions, course instructors’ decision-making, or information gathering for course design. The present work conducts a longitudinal educational data mining study by applying <i>IntelliDaM</i> to real data collected at Babeş-Bolyai University, Romania, for a Computer Science course. The problem of mining educational data has been thoroughly examined using the proposed framework, with the goal of analysing students’ performance. A very good performance has been achieved for the classification task (an F1 score of around 92%), and the results also highlighted a statistically significant performance improvement by using a technique for selecting discriminative data features. The performed study confirmed that <i>IntelliDaM</i> could be a useful instrument in educational environments, particularly for improving decision-making processes, like designing courses, the setup of efficient examinations, avoiding plagiarism, or offering support regarding stress management." @default.
- W4289821414 created "2022-08-05" @default.
- W4289821414 creator A5052905844 @default.
- W4289821414 creator A5062059381 @default.
- W4289821414 creator A5084980583 @default.
- W4289821414 creator A5088200731 @default.
- W4289821414 date "2022-01-01" @default.
- W4289821414 modified "2023-10-17" @default.
- W4289821414 title "<i>IntelliDaM</i>: A Machine Learning-Based Framework for Enhancing the Performance of Decision-Making Processes. A Case Study for Educational Data Mining" @default.
- W4289821414 cites W1545302199 @default.
- W4289821414 cites W1985814284 @default.
- W4289821414 cites W2016210396 @default.
- W4289821414 cites W2042361197 @default.
- W4289821414 cites W2053868870 @default.
- W4289821414 cites W2077361439 @default.
- W4289821414 cites W2130891967 @default.
- W4289821414 cites W2139285475 @default.
- W4289821414 cites W2154484340 @default.
- W4289821414 cites W2317560672 @default.
- W4289821414 cites W2596377599 @default.
- W4289821414 cites W2724733028 @default.
- W4289821414 cites W2757875814 @default.
- W4289821414 cites W2792505425 @default.
- W4289821414 cites W2811374032 @default.
- W4289821414 cites W2894546967 @default.
- W4289821414 cites W2898750744 @default.
- W4289821414 cites W2901284326 @default.
- W4289821414 cites W2917344953 @default.
- W4289821414 cites W2945857065 @default.
- W4289821414 cites W2969450065 @default.
- W4289821414 cites W2970787375 @default.
- W4289821414 cites W2980471143 @default.
- W4289821414 cites W2996113665 @default.
- W4289821414 cites W2999671561 @default.
- W4289821414 cites W3012145951 @default.
- W4289821414 cites W3017131514 @default.
- W4289821414 cites W3023935121 @default.
- W4289821414 cites W3032389299 @default.
- W4289821414 cites W3035776390 @default.
- W4289821414 cites W3036755187 @default.
- W4289821414 cites W3091041510 @default.
- W4289821414 cites W3092274097 @default.
- W4289821414 cites W3108883341 @default.
- W4289821414 cites W3111650911 @default.
- W4289821414 cites W3113033734 @default.
- W4289821414 cites W3113711264 @default.
- W4289821414 cites W3129322880 @default.
- W4289821414 cites W3154556092 @default.
- W4289821414 cites W3178890359 @default.
- W4289821414 cites W3200750608 @default.
- W4289821414 cites W3201461977 @default.
- W4289821414 cites W3212721567 @default.
- W4289821414 cites W4200044454 @default.
- W4289821414 cites W4200234969 @default.
- W4289821414 cites W4200246656 @default.
- W4289821414 cites W4285211649 @default.
- W4289821414 cites W4302570227 @default.
- W4289821414 cites W941149844 @default.
- W4289821414 doi "https://doi.org/10.1109/access.2022.3195531" @default.
- W4289821414 hasPublicationYear "2022" @default.
- W4289821414 type Work @default.
- W4289821414 citedByCount "4" @default.
- W4289821414 countsByYear W42898214142023 @default.
- W4289821414 crossrefType "journal-article" @default.
- W4289821414 hasAuthorship W4289821414A5052905844 @default.
- W4289821414 hasAuthorship W4289821414A5062059381 @default.
- W4289821414 hasAuthorship W4289821414A5084980583 @default.
- W4289821414 hasAuthorship W4289821414A5088200731 @default.
- W4289821414 hasBestOaLocation W42898214141 @default.
- W4289821414 hasConcept C111472728 @default.
- W4289821414 hasConcept C119857082 @default.
- W4289821414 hasConcept C124101348 @default.
- W4289821414 hasConcept C127413603 @default.
- W4289821414 hasConcept C138885662 @default.
- W4289821414 hasConcept C154945302 @default.
- W4289821414 hasConcept C201995342 @default.
- W4289821414 hasConcept C202444582 @default.
- W4289821414 hasConcept C2522767166 @default.
- W4289821414 hasConcept C2777598771 @default.
- W4289821414 hasConcept C2779530757 @default.
- W4289821414 hasConcept C2780451532 @default.
- W4289821414 hasConcept C33923547 @default.
- W4289821414 hasConcept C41008148 @default.
- W4289821414 hasConcept C56739046 @default.
- W4289821414 hasConcept C9652623 @default.
- W4289821414 hasConcept C97931131 @default.
- W4289821414 hasConceptScore W4289821414C111472728 @default.
- W4289821414 hasConceptScore W4289821414C119857082 @default.
- W4289821414 hasConceptScore W4289821414C124101348 @default.
- W4289821414 hasConceptScore W4289821414C127413603 @default.
- W4289821414 hasConceptScore W4289821414C138885662 @default.
- W4289821414 hasConceptScore W4289821414C154945302 @default.
- W4289821414 hasConceptScore W4289821414C201995342 @default.
- W4289821414 hasConceptScore W4289821414C202444582 @default.
- W4289821414 hasConceptScore W4289821414C2522767166 @default.
- W4289821414 hasConceptScore W4289821414C2777598771 @default.
- W4289821414 hasConceptScore W4289821414C2779530757 @default.
- W4289821414 hasConceptScore W4289821414C2780451532 @default.