Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289822901> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4289822901 endingPage "17150" @default.
- W4289822901 startingPage "17139" @default.
- W4289822901 abstract "When a stacked denoising auto-encoder (SDAE) manually sets several parameters, the gradient of neuron weight becomes dispersed, reducing the ability to retrieve sensitive fault feature information from a bearing vibration signal under multiple working conditions and strong noise. A bearing health monitoring and defect diagnostic model based on variational mode decomposition (VMD) combined with continuous wavelet transform (CWT) and SDAE optimized by sparrow search algorithm (SSA) is presented to tackle this problem. The wavelet time-frequency diagram is obtained by VMD and CWT, which maps the fault characteristic information to different local positions in time and scale, and then the wavelet time-frequency diagrams are input into the SDAE for in-depth training. To achieve the ideal structure of SDAE and increase the feature extraction capabilities of SDAE for weak signals, SSA is utilized for the global combination and adaptive selection of several SDAE parameters. The bearing failure diagnostic model based on VMD-CWT-SSA-SDAE outperforms BPNN, SVM, the traditional SDAE, GA-SDAE, PSO-SDAE, and SSA-DBN in diagnosis accuracy, generalization performance, and anti-noise performance when tested on various data sets." @default.
- W4289822901 created "2022-08-05" @default.
- W4289822901 creator A5009143123 @default.
- W4289822901 creator A5029569719 @default.
- W4289822901 creator A5052242644 @default.
- W4289822901 creator A5073139355 @default.
- W4289822901 date "2022-09-01" @default.
- W4289822901 modified "2023-10-15" @default.
- W4289822901 title "Intelligent Fault Diagnosis of Rotating Machines Based on Wavelet Time-Frequency Diagram and Optimized Stacked Denoising Auto-Encoder" @default.
- W4289822901 cites W2802686655 @default.
- W4289822901 cites W2819539323 @default.
- W4289822901 cites W2954876896 @default.
- W4289822901 cites W2986488475 @default.
- W4289822901 cites W2997783278 @default.
- W4289822901 cites W2998553334 @default.
- W4289822901 cites W3002466428 @default.
- W4289822901 cites W3012113763 @default.
- W4289822901 cites W3024462273 @default.
- W4289822901 cites W3048446182 @default.
- W4289822901 cites W3082600888 @default.
- W4289822901 cites W3122126208 @default.
- W4289822901 cites W3127669014 @default.
- W4289822901 cites W3131207985 @default.
- W4289822901 cites W3153801744 @default.
- W4289822901 cites W3161456797 @default.
- W4289822901 cites W3174485934 @default.
- W4289822901 cites W3177524844 @default.
- W4289822901 cites W3197114051 @default.
- W4289822901 cites W3209135192 @default.
- W4289822901 cites W3212445966 @default.
- W4289822901 cites W3215724944 @default.
- W4289822901 cites W3217374538 @default.
- W4289822901 cites W4200192600 @default.
- W4289822901 cites W4200432631 @default.
- W4289822901 cites W4221099423 @default.
- W4289822901 cites W4225942666 @default.
- W4289822901 cites W4284694767 @default.
- W4289822901 cites W4285064815 @default.
- W4289822901 cites W4285065294 @default.
- W4289822901 cites W4293104602 @default.
- W4289822901 doi "https://doi.org/10.1109/jsen.2022.3193943" @default.
- W4289822901 hasPublicationYear "2022" @default.
- W4289822901 type Work @default.
- W4289822901 citedByCount "7" @default.
- W4289822901 countsByYear W42898229012022 @default.
- W4289822901 countsByYear W42898229012023 @default.
- W4289822901 crossrefType "journal-article" @default.
- W4289822901 hasAuthorship W4289822901A5009143123 @default.
- W4289822901 hasAuthorship W4289822901A5029569719 @default.
- W4289822901 hasAuthorship W4289822901A5052242644 @default.
- W4289822901 hasAuthorship W4289822901A5073139355 @default.
- W4289822901 hasConcept C127313418 @default.
- W4289822901 hasConcept C153180895 @default.
- W4289822901 hasConcept C154945302 @default.
- W4289822901 hasConcept C155777637 @default.
- W4289822901 hasConcept C165205528 @default.
- W4289822901 hasConcept C175551986 @default.
- W4289822901 hasConcept C196216189 @default.
- W4289822901 hasConcept C41008148 @default.
- W4289822901 hasConcept C47432892 @default.
- W4289822901 hasConcept C52622490 @default.
- W4289822901 hasConceptScore W4289822901C127313418 @default.
- W4289822901 hasConceptScore W4289822901C153180895 @default.
- W4289822901 hasConceptScore W4289822901C154945302 @default.
- W4289822901 hasConceptScore W4289822901C155777637 @default.
- W4289822901 hasConceptScore W4289822901C165205528 @default.
- W4289822901 hasConceptScore W4289822901C175551986 @default.
- W4289822901 hasConceptScore W4289822901C196216189 @default.
- W4289822901 hasConceptScore W4289822901C41008148 @default.
- W4289822901 hasConceptScore W4289822901C47432892 @default.
- W4289822901 hasConceptScore W4289822901C52622490 @default.
- W4289822901 hasFunder F4320322955 @default.
- W4289822901 hasIssue "17" @default.
- W4289822901 hasLocation W42898229011 @default.
- W4289822901 hasOpenAccess W4289822901 @default.
- W4289822901 hasPrimaryLocation W42898229011 @default.
- W4289822901 hasRelatedWork W1577789985 @default.
- W4289822901 hasRelatedWork W2014395068 @default.
- W4289822901 hasRelatedWork W2041988345 @default.
- W4289822901 hasRelatedWork W2088158554 @default.
- W4289822901 hasRelatedWork W2103922761 @default.
- W4289822901 hasRelatedWork W2134754074 @default.
- W4289822901 hasRelatedWork W2367537358 @default.
- W4289822901 hasRelatedWork W2390482320 @default.
- W4289822901 hasRelatedWork W2942471066 @default.
- W4289822901 hasRelatedWork W4321064842 @default.
- W4289822901 hasVolume "22" @default.
- W4289822901 isParatext "false" @default.
- W4289822901 isRetracted "false" @default.
- W4289822901 workType "article" @default.