Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289823872> ?p ?o ?g. }
- W4289823872 endingPage "17996" @default.
- W4289823872 startingPage "17988" @default.
- W4289823872 abstract "Nonintrusive load monitoring (NILM) techniques allow the individual consumption of devices in an installation to be reported to the user, collaborating in the awareness and managing consumers’ energy use. One of the most critical steps in NILM procedures is feature extraction, which involves the quantitative description of the load signature. Most state-of-the-art methods, particularly those involving voltage–current ( <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>V–I</i> ) trajectories, are based on features that specialists design when manually analyzing signals—the so-called hand-crafted features. On the other hand, this work presents a mathematical method that describes the transient and steady-state (SS) load signature using a 2-D Fourier series, avoiding hand-crafted descriptors. The proposed approach evaluates load identification results with different classifiers and publicly available datasets. In addition to the evaluation of the proposed method’s computational resources, such as execution time and memory footprint in an embedded system, their robustness to noise insertion is also assessed. The results of the proposed approach indicate an average per-class accuracy higher than 90%, equivalent or superior to hand-crafted <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>V–I</i> trajectory-based methods in most cases and even deep learning approaches recently presented in the literature. Such results reinforce the main contributions of this work: 1) a mathematical method to extract interpretable features; 2) results comparable or superior to other state-of-the-art methods; and 3) promising results in computational resources in an embedded system." @default.
- W4289823872 created "2022-08-05" @default.
- W4289823872 creator A5001203500 @default.
- W4289823872 creator A5025120288 @default.
- W4289823872 creator A5039969745 @default.
- W4289823872 creator A5051011289 @default.
- W4289823872 creator A5072128736 @default.
- W4289823872 creator A5088729127 @default.
- W4289823872 date "2022-09-15" @default.
- W4289823872 modified "2023-10-16" @default.
- W4289823872 title "Feature Extraction of <i>V–I</i> Trajectory Using 2-D Fourier Series for Electrical Load Classification" @default.
- W4289823872 cites W1994042232 @default.
- W4289823872 cites W2002623096 @default.
- W4289823872 cites W2100955315 @default.
- W4289823872 cites W2111933145 @default.
- W4289823872 cites W2198139313 @default.
- W4289823872 cites W2289387268 @default.
- W4289823872 cites W2343895595 @default.
- W4289823872 cites W2588675660 @default.
- W4289823872 cites W2754499592 @default.
- W4289823872 cites W2764060181 @default.
- W4289823872 cites W2775375016 @default.
- W4289823872 cites W2778405665 @default.
- W4289823872 cites W2884243640 @default.
- W4289823872 cites W2886986806 @default.
- W4289823872 cites W2891483719 @default.
- W4289823872 cites W2904841534 @default.
- W4289823872 cites W2918940049 @default.
- W4289823872 cites W2936187816 @default.
- W4289823872 cites W2953950392 @default.
- W4289823872 cites W2988355378 @default.
- W4289823872 cites W2997219630 @default.
- W4289823872 cites W3013681544 @default.
- W4289823872 cites W3016721332 @default.
- W4289823872 cites W3040566078 @default.
- W4289823872 cites W3045430323 @default.
- W4289823872 cites W3048922269 @default.
- W4289823872 cites W3054239538 @default.
- W4289823872 cites W3081280103 @default.
- W4289823872 cites W3091761066 @default.
- W4289823872 cites W3093392647 @default.
- W4289823872 cites W3103730413 @default.
- W4289823872 cites W3199873924 @default.
- W4289823872 cites W3207902192 @default.
- W4289823872 cites W3213916533 @default.
- W4289823872 cites W4251880332 @default.
- W4289823872 doi "https://doi.org/10.1109/jsen.2022.3194999" @default.
- W4289823872 hasPublicationYear "2022" @default.
- W4289823872 type Work @default.
- W4289823872 citedByCount "3" @default.
- W4289823872 countsByYear W42898238722023 @default.
- W4289823872 crossrefType "journal-article" @default.
- W4289823872 hasAuthorship W4289823872A5001203500 @default.
- W4289823872 hasAuthorship W4289823872A5025120288 @default.
- W4289823872 hasAuthorship W4289823872A5039969745 @default.
- W4289823872 hasAuthorship W4289823872A5051011289 @default.
- W4289823872 hasAuthorship W4289823872A5072128736 @default.
- W4289823872 hasAuthorship W4289823872A5088729127 @default.
- W4289823872 hasConcept C104317684 @default.
- W4289823872 hasConcept C116834253 @default.
- W4289823872 hasConcept C119857082 @default.
- W4289823872 hasConcept C121332964 @default.
- W4289823872 hasConcept C124101348 @default.
- W4289823872 hasConcept C1276947 @default.
- W4289823872 hasConcept C134306372 @default.
- W4289823872 hasConcept C13662910 @default.
- W4289823872 hasConcept C153180895 @default.
- W4289823872 hasConcept C154945302 @default.
- W4289823872 hasConcept C185592680 @default.
- W4289823872 hasConcept C207864730 @default.
- W4289823872 hasConcept C33923547 @default.
- W4289823872 hasConcept C41008148 @default.
- W4289823872 hasConcept C52622490 @default.
- W4289823872 hasConcept C55493867 @default.
- W4289823872 hasConcept C59822182 @default.
- W4289823872 hasConcept C63479239 @default.
- W4289823872 hasConcept C86803240 @default.
- W4289823872 hasConceptScore W4289823872C104317684 @default.
- W4289823872 hasConceptScore W4289823872C116834253 @default.
- W4289823872 hasConceptScore W4289823872C119857082 @default.
- W4289823872 hasConceptScore W4289823872C121332964 @default.
- W4289823872 hasConceptScore W4289823872C124101348 @default.
- W4289823872 hasConceptScore W4289823872C1276947 @default.
- W4289823872 hasConceptScore W4289823872C134306372 @default.
- W4289823872 hasConceptScore W4289823872C13662910 @default.
- W4289823872 hasConceptScore W4289823872C153180895 @default.
- W4289823872 hasConceptScore W4289823872C154945302 @default.
- W4289823872 hasConceptScore W4289823872C185592680 @default.
- W4289823872 hasConceptScore W4289823872C207864730 @default.
- W4289823872 hasConceptScore W4289823872C33923547 @default.
- W4289823872 hasConceptScore W4289823872C41008148 @default.
- W4289823872 hasConceptScore W4289823872C52622490 @default.
- W4289823872 hasConceptScore W4289823872C55493867 @default.
- W4289823872 hasConceptScore W4289823872C59822182 @default.
- W4289823872 hasConceptScore W4289823872C63479239 @default.
- W4289823872 hasConceptScore W4289823872C86803240 @default.
- W4289823872 hasIssue "18" @default.
- W4289823872 hasLocation W42898238721 @default.