Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289831056> ?p ?o ?g. }
- W4289831056 endingPage "4304" @default.
- W4289831056 startingPage "4288" @default.
- W4289831056 abstract "A large number of chemical compounds are available in databases such as PubChem and ZINC. However, currently known compounds, though large, represent only a fraction of possible compounds, which is known as chemical space. Many of these compounds in the databases are annotated with properties and assay data that can be used for drug discovery efforts. For this goal, a number of machine learning algorithms have been developed and recent deep learning technologies can be effectively used to navigate chemical space, especially for unknown chemical compounds, in terms of drug-related tasks. In this article, we survey how deep learning technologies can model and utilize chemical compound information in a task-oriented way by exploiting annotated properties and assay data in the chemical compounds databases. We first compile what kind of tasks are trying to be accomplished by machine learning methods. Then, we survey deep learning technologies to show their modeling power and current applications for accomplishing drug related tasks. Next, we survey deep learning techniques to address the insufficiency issue of annotated data for more effective navigation of chemical space. Chemical compound information alone may not be powerful enough for drug related tasks, thus we survey what kind of information, such as assay and gene expression data, can be used to improve the prediction power of deep learning models. Finally, we conclude this survey with four important newly developed technologies that are yet to be fully incorporated into computational analysis of chemical information." @default.
- W4289831056 created "2022-08-05" @default.
- W4289831056 creator A5037699975 @default.
- W4289831056 creator A5046522037 @default.
- W4289831056 creator A5054562741 @default.
- W4289831056 creator A5057875428 @default.
- W4289831056 creator A5074175198 @default.
- W4289831056 creator A5085449381 @default.
- W4289831056 creator A5090194343 @default.
- W4289831056 date "2022-01-01" @default.
- W4289831056 modified "2023-10-06" @default.
- W4289831056 title "On modeling and utilizing chemical compound information with deep learning technologies: A task-oriented approach" @default.
- W4289831056 cites W1601495365 @default.
- W4289831056 cites W1869829652 @default.
- W4289831056 cites W1880740461 @default.
- W4289831056 cites W1964513093 @default.
- W4289831056 cites W1965313623 @default.
- W4289831056 cites W1965659734 @default.
- W4289831056 cites W1968624262 @default.
- W4289831056 cites W1971527053 @default.
- W4289831056 cites W1975147762 @default.
- W4289831056 cites W1977573154 @default.
- W4289831056 cites W1977880285 @default.
- W4289831056 cites W1980460370 @default.
- W4289831056 cites W1983380373 @default.
- W4289831056 cites W1983478747 @default.
- W4289831056 cites W1988037271 @default.
- W4289831056 cites W1991645219 @default.
- W4289831056 cites W1992156271 @default.
- W4289831056 cites W1999798000 @default.
- W4289831056 cites W2003122257 @default.
- W4289831056 cites W2008505552 @default.
- W4289831056 cites W2009456532 @default.
- W4289831056 cites W2010427019 @default.
- W4289831056 cites W2011647635 @default.
- W4289831056 cites W2012444866 @default.
- W4289831056 cites W2013381750 @default.
- W4289831056 cites W2014110208 @default.
- W4289831056 cites W2014858249 @default.
- W4289831056 cites W2019678805 @default.
- W4289831056 cites W2020987809 @default.
- W4289831056 cites W2022476850 @default.
- W4289831056 cites W2023818227 @default.
- W4289831056 cites W2025156367 @default.
- W4289831056 cites W2027482274 @default.
- W4289831056 cites W2028046413 @default.
- W4289831056 cites W2032222317 @default.
- W4289831056 cites W2034008127 @default.
- W4289831056 cites W2039719637 @default.
- W4289831056 cites W2040651998 @default.
- W4289831056 cites W2041454039 @default.
- W4289831056 cites W2043509228 @default.
- W4289831056 cites W2044834685 @default.
- W4289831056 cites W2044911368 @default.
- W4289831056 cites W2046589863 @default.
- W4289831056 cites W2051594610 @default.
- W4289831056 cites W2054203041 @default.
- W4289831056 cites W2059324770 @default.
- W4289831056 cites W2061843861 @default.
- W4289831056 cites W2069457036 @default.
- W4289831056 cites W2080355854 @default.
- W4289831056 cites W2080635178 @default.
- W4289831056 cites W2084845010 @default.
- W4289831056 cites W2090011073 @default.
- W4289831056 cites W2096059190 @default.
- W4289831056 cites W2096705340 @default.
- W4289831056 cites W2097559461 @default.
- W4289831056 cites W2099812585 @default.
- W4289831056 cites W2106605095 @default.
- W4289831056 cites W2108458189 @default.
- W4289831056 cites W2114704115 @default.
- W4289831056 cites W2118233996 @default.
- W4289831056 cites W2132262459 @default.
- W4289831056 cites W2132741387 @default.
- W4289831056 cites W2135732933 @default.
- W4289831056 cites W2136188768 @default.
- W4289831056 cites W2140972311 @default.
- W4289831056 cites W2148145769 @default.
- W4289831056 cites W2150717117 @default.
- W4289831056 cites W2151823004 @default.
- W4289831056 cites W2151971404 @default.
- W4289831056 cites W2152825437 @default.
- W4289831056 cites W2159821105 @default.
- W4289831056 cites W2161782568 @default.
- W4289831056 cites W2172184136 @default.
- W4289831056 cites W2176758925 @default.
- W4289831056 cites W2200017991 @default.
- W4289831056 cites W2220807183 @default.
- W4289831056 cites W2234529989 @default.
- W4289831056 cites W2276859037 @default.
- W4289831056 cites W2290847742 @default.
- W4289831056 cites W2305293558 @default.
- W4289831056 cites W2399237148 @default.
- W4289831056 cites W2406943157 @default.
- W4289831056 cites W2461620095 @default.
- W4289831056 cites W2473190403 @default.
- W4289831056 cites W2481808473 @default.
- W4289831056 cites W2511526876 @default.