Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289834691> ?p ?o ?g. }
- W4289834691 endingPage "125029" @default.
- W4289834691 startingPage "125029" @default.
- W4289834691 abstract "Heating, ventilation, and air-conditioning systems provide a comfortable indoor thermal environment, but high energy consumption is often necessary to achieve an adequate level of indoor thermal comfort. However, it is challenging to design an energy-efficient thermal comfort control strategy, mainly because the internal thermal environment is influenced by complicated factors and difficult to model accurately. To solve this problem, a control strategy incorporating the parallel temporal convolutional neural network (PTCN) and the improved chimp optimization algorithm (ICHOA) is proposed for thermal comfort control of buildings. Thermal comfort control is transformed into a cost-minimization problem by establishing an objective function for both the future thermal comfort of the occupants and energy consumption and optimizing multiple air-conditioning temperature set points for the coming day. First, to ensure the prediction performance, a PTCN model was developed to predict the energy consumption and thermal comfort under different factors. An opposition-learning-based adaptive chimp algorithm was then used to solve the objective function to output the optimal set temperature. Finally, the superiority of the PTCN-ICHOA optimization strategy was verified using an office building in Jinan as an example. In winter and summer experiments, the proposed PTCN model achieved the lowest prediction errors among the models compared in terms of energy and temperature prediction. Furthermore, the PTCN-ICHOA optimization model exhibited faster convergence than the other models for both experiments. Through the proposed optimization strategy, energy consumption savings of approximately 6.3%–8.1% can be achieved while maintaining indoor thermal comfort." @default.
- W4289834691 created "2022-08-05" @default.
- W4289834691 creator A5011750649 @default.
- W4289834691 creator A5018514527 @default.
- W4289834691 creator A5023029514 @default.
- W4289834691 creator A5023987464 @default.
- W4289834691 creator A5025389563 @default.
- W4289834691 creator A5060090190 @default.
- W4289834691 creator A5071821810 @default.
- W4289834691 creator A5087631945 @default.
- W4289834691 date "2022-11-01" @default.
- W4289834691 modified "2023-10-13" @default.
- W4289834691 title "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm" @default.
- W4289834691 cites W1999351075 @default.
- W4289834691 cites W2099692183 @default.
- W4289834691 cites W2138475279 @default.
- W4289834691 cites W2145339207 @default.
- W4289834691 cites W2161020850 @default.
- W4289834691 cites W2166313543 @default.
- W4289834691 cites W2278513821 @default.
- W4289834691 cites W2409637898 @default.
- W4289834691 cites W2543909292 @default.
- W4289834691 cites W2587347436 @default.
- W4289834691 cites W2761176971 @default.
- W4289834691 cites W2790613195 @default.
- W4289834691 cites W2888202912 @default.
- W4289834691 cites W2889794315 @default.
- W4289834691 cites W2892262816 @default.
- W4289834691 cites W2901645090 @default.
- W4289834691 cites W2904701608 @default.
- W4289834691 cites W2911794652 @default.
- W4289834691 cites W2912831070 @default.
- W4289834691 cites W2924196570 @default.
- W4289834691 cites W2940870102 @default.
- W4289834691 cites W2948490758 @default.
- W4289834691 cites W2986659651 @default.
- W4289834691 cites W2999491213 @default.
- W4289834691 cites W3000040096 @default.
- W4289834691 cites W3000100933 @default.
- W4289834691 cites W3007040893 @default.
- W4289834691 cites W3011109481 @default.
- W4289834691 cites W3023669592 @default.
- W4289834691 cites W3028491587 @default.
- W4289834691 cites W3031194307 @default.
- W4289834691 cites W3035890318 @default.
- W4289834691 cites W3036602258 @default.
- W4289834691 cites W3080482982 @default.
- W4289834691 cites W3088977777 @default.
- W4289834691 cites W3123541389 @default.
- W4289834691 cites W3139892369 @default.
- W4289834691 cites W3147468181 @default.
- W4289834691 cites W3159559011 @default.
- W4289834691 cites W3171606725 @default.
- W4289834691 cites W3176644937 @default.
- W4289834691 cites W3183144335 @default.
- W4289834691 cites W3188450664 @default.
- W4289834691 cites W3191102022 @default.
- W4289834691 cites W3191876048 @default.
- W4289834691 cites W3193211895 @default.
- W4289834691 cites W3203911934 @default.
- W4289834691 cites W3211845352 @default.
- W4289834691 cites W3213215216 @default.
- W4289834691 cites W3216643743 @default.
- W4289834691 cites W4205535139 @default.
- W4289834691 cites W4205571213 @default.
- W4289834691 doi "https://doi.org/10.1016/j.energy.2022.125029" @default.
- W4289834691 hasPublicationYear "2022" @default.
- W4289834691 type Work @default.
- W4289834691 citedByCount "5" @default.
- W4289834691 countsByYear W42898346912023 @default.
- W4289834691 crossrefType "journal-article" @default.
- W4289834691 hasAuthorship W4289834691A5011750649 @default.
- W4289834691 hasAuthorship W4289834691A5018514527 @default.
- W4289834691 hasAuthorship W4289834691A5023029514 @default.
- W4289834691 hasAuthorship W4289834691A5023987464 @default.
- W4289834691 hasAuthorship W4289834691A5025389563 @default.
- W4289834691 hasAuthorship W4289834691A5060090190 @default.
- W4289834691 hasAuthorship W4289834691A5071821810 @default.
- W4289834691 hasAuthorship W4289834691A5087631945 @default.
- W4289834691 hasConcept C103742991 @default.
- W4289834691 hasConcept C105795698 @default.
- W4289834691 hasConcept C11413529 @default.
- W4289834691 hasConcept C119599485 @default.
- W4289834691 hasConcept C121332964 @default.
- W4289834691 hasConcept C126255220 @default.
- W4289834691 hasConcept C127413603 @default.
- W4289834691 hasConcept C133913538 @default.
- W4289834691 hasConcept C137836250 @default.
- W4289834691 hasConcept C153294291 @default.
- W4289834691 hasConcept C154945302 @default.
- W4289834691 hasConcept C186370098 @default.
- W4289834691 hasConcept C204530211 @default.
- W4289834691 hasConcept C2780165032 @default.
- W4289834691 hasConcept C33923547 @default.
- W4289834691 hasConcept C41008148 @default.
- W4289834691 hasConcept C44154836 @default.
- W4289834691 hasConcept C50644808 @default.
- W4289834691 hasConcept C78519656 @default.