Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289840551> ?p ?o ?g. }
- W4289840551 abstract "Abstract Theories about the neural control of movement are largely based on movement-sensing devices that capture the dynamics of predefined anatomical landmarks. However, neuromuscular interfaces such as surface electromyography (sEMG) can potentially overcome the limitations of these technologies by directly sensing the motor commands transmitted to the muscles. This allows for the continuous, real-time prediction of kinematics and kinetics without being limited by the biological and physical constraints that affect motion-based technologies. In this work, we present a deep learning method that can decode and map the electrophysiological activity of the forearm muscles into movements of the human hand. We recorded the kinematics and kinetics of the human hand during a wide range of grasping and individual digit movements covering more than 20 degrees of freedom of the hand at slow (0.5 Hz) and fast (1.5 Hz) movement speeds in healthy participants. The input of the model consists of three-hundred EMG sensors placed only on the extrinsic hand muscles. We demonstrate that our neural network can accurately predict the kinematics and contact forces of the hand even during unseen movements and with simulated real-time resolution. By examining the latent space of the network, we find evidence that it has learned the underlying anatomical and neural features of the sEMG that drive all hand motor behaviours." @default.
- W4289840551 created "2022-08-05" @default.
- W4289840551 creator A5008794352 @default.
- W4289840551 creator A5008873703 @default.
- W4289840551 creator A5020411804 @default.
- W4289840551 creator A5024571000 @default.
- W4289840551 creator A5039554310 @default.
- W4289840551 creator A5064597134 @default.
- W4289840551 creator A5065097566 @default.
- W4289840551 creator A5068772120 @default.
- W4289840551 date "2022-08-02" @default.
- W4289840551 modified "2023-09-26" @default.
- W4289840551 title "Sensing the Full Dynamics of the Human Hand with a Neural Interface and Deep Learning" @default.
- W4289840551 cites W1839631688 @default.
- W4289840551 cites W188147742 @default.
- W4289840551 cites W1997500560 @default.
- W4289840551 cites W2045902658 @default.
- W4289840551 cites W2046556840 @default.
- W4289840551 cites W2059391125 @default.
- W4289840551 cites W2130378672 @default.
- W4289840551 cites W2243789297 @default.
- W4289840551 cites W2501245757 @default.
- W4289840551 cites W2555541061 @default.
- W4289840551 cites W255743778 @default.
- W4289840551 cites W2740983381 @default.
- W4289840551 cites W2781714299 @default.
- W4289840551 cites W2796589614 @default.
- W4289840551 cites W2887114371 @default.
- W4289840551 cites W2972404073 @default.
- W4289840551 cites W2973700007 @default.
- W4289840551 cites W2990110246 @default.
- W4289840551 cites W3049774894 @default.
- W4289840551 cites W3082023888 @default.
- W4289840551 cites W3082568354 @default.
- W4289840551 cites W3103982318 @default.
- W4289840551 cites W3121267967 @default.
- W4289840551 cites W3130588879 @default.
- W4289840551 cites W3136525061 @default.
- W4289840551 cites W3164499460 @default.
- W4289840551 cites W3169863848 @default.
- W4289840551 cites W3190122749 @default.
- W4289840551 cites W3194931415 @default.
- W4289840551 cites W3198095349 @default.
- W4289840551 cites W3198802125 @default.
- W4289840551 cites W3207526834 @default.
- W4289840551 cites W33507944 @default.
- W4289840551 cites W4288054280 @default.
- W4289840551 cites W4294975264 @default.
- W4289840551 cites W4295126716 @default.
- W4289840551 cites W4307092689 @default.
- W4289840551 cites W4308088747 @default.
- W4289840551 cites W4312532542 @default.
- W4289840551 cites W4312630265 @default.
- W4289840551 doi "https://doi.org/10.1101/2022.07.29.502064" @default.
- W4289840551 hasPublicationYear "2022" @default.
- W4289840551 type Work @default.
- W4289840551 citedByCount "2" @default.
- W4289840551 countsByYear W42898405512023 @default.
- W4289840551 crossrefType "posted-content" @default.
- W4289840551 hasAuthorship W4289840551A5008794352 @default.
- W4289840551 hasAuthorship W4289840551A5008873703 @default.
- W4289840551 hasAuthorship W4289840551A5020411804 @default.
- W4289840551 hasAuthorship W4289840551A5024571000 @default.
- W4289840551 hasAuthorship W4289840551A5039554310 @default.
- W4289840551 hasAuthorship W4289840551A5064597134 @default.
- W4289840551 hasAuthorship W4289840551A5065097566 @default.
- W4289840551 hasAuthorship W4289840551A5068772120 @default.
- W4289840551 hasBestOaLocation W42898405511 @default.
- W4289840551 hasConcept C113843644 @default.
- W4289840551 hasConcept C121332964 @default.
- W4289840551 hasConcept C129307140 @default.
- W4289840551 hasConcept C137813230 @default.
- W4289840551 hasConcept C145912823 @default.
- W4289840551 hasConcept C154945302 @default.
- W4289840551 hasConcept C15744967 @default.
- W4289840551 hasConcept C157915830 @default.
- W4289840551 hasConcept C169760540 @default.
- W4289840551 hasConcept C173608175 @default.
- W4289840551 hasConcept C208081375 @default.
- W4289840551 hasConcept C24890656 @default.
- W4289840551 hasConcept C2777515770 @default.
- W4289840551 hasConcept C2780226923 @default.
- W4289840551 hasConcept C31972630 @default.
- W4289840551 hasConcept C39920418 @default.
- W4289840551 hasConcept C41008148 @default.
- W4289840551 hasConcept C44154836 @default.
- W4289840551 hasConcept C50644808 @default.
- W4289840551 hasConcept C62520636 @default.
- W4289840551 hasConcept C74650414 @default.
- W4289840551 hasConceptScore W4289840551C113843644 @default.
- W4289840551 hasConceptScore W4289840551C121332964 @default.
- W4289840551 hasConceptScore W4289840551C129307140 @default.
- W4289840551 hasConceptScore W4289840551C137813230 @default.
- W4289840551 hasConceptScore W4289840551C145912823 @default.
- W4289840551 hasConceptScore W4289840551C154945302 @default.
- W4289840551 hasConceptScore W4289840551C15744967 @default.
- W4289840551 hasConceptScore W4289840551C157915830 @default.
- W4289840551 hasConceptScore W4289840551C169760540 @default.
- W4289840551 hasConceptScore W4289840551C173608175 @default.
- W4289840551 hasConceptScore W4289840551C208081375 @default.