Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289842794> ?p ?o ?g. }
- W4289842794 endingPage "157" @default.
- W4289842794 startingPage "133" @default.
- W4289842794 abstract "The article developed a methodology for nowcasting and short-term forecasting key Russian macroeconomic aggregates: real GDP, consumption, investment, export, import, using machine learning methods: boosting, elastic net, and random forest. The set of predictors included indicators of the stock market, money market, surveys, world prices for resources, price indices, and other statistical indicators of different frequency, from daily to quarterly. Our approach makes available a detailed examination of the changes in forecasts with the flow of new information. For most of the considered variables, a monotonic non-deterioration of the forecast quality was obtained with an expansion of available information. Furthermore, machine learning methods have shown significant superiority in predictive performance over naive prediction. The considered methods within the framework of the pseudo-experiment quickly showed a strong drop in real GDP, household consumption, and other variables in the context of the spread of the COVID-19 pandemic in the 2nd and 3rd quarters of 2020." @default.
- W4289842794 created "2022-08-05" @default.
- W4289842794 creator A5003911558 @default.
- W4289842794 creator A5008907207 @default.
- W4289842794 date "2022-08-04" @default.
- W4289842794 modified "2023-09-27" @default.
- W4289842794 title "Nowcasting Russia’s key macroeconomic variables using machine learning" @default.
- W4289842794 cites W1678356000 @default.
- W4289842794 cites W1970487353 @default.
- W4289842794 cites W1985258161 @default.
- W4289842794 cites W1991703024 @default.
- W4289842794 cites W2000842688 @default.
- W4289842794 cites W2045065320 @default.
- W4289842794 cites W2077565477 @default.
- W4289842794 cites W2087347434 @default.
- W4289842794 cites W2093938699 @default.
- W4289842794 cites W2103958279 @default.
- W4289842794 cites W2110515654 @default.
- W4289842794 cites W2122825543 @default.
- W4289842794 cites W2155963925 @default.
- W4289842794 cites W2166271947 @default.
- W4289842794 cites W2233673592 @default.
- W4289842794 cites W2908228456 @default.
- W4289842794 cites W2911964244 @default.
- W4289842794 cites W2922024496 @default.
- W4289842794 cites W2951503719 @default.
- W4289842794 cites W2958666431 @default.
- W4289842794 cites W3010706771 @default.
- W4289842794 cites W3110070405 @default.
- W4289842794 cites W3122434613 @default.
- W4289842794 cites W3123109518 @default.
- W4289842794 cites W3124436887 @default.
- W4289842794 cites W3125833358 @default.
- W4289842794 cites W3133714637 @default.
- W4289842794 cites W3187841211 @default.
- W4289842794 cites W4212883601 @default.
- W4289842794 cites W4291327732 @default.
- W4289842794 doi "https://doi.org/10.32609/0042-8736-2022-8-133-157" @default.
- W4289842794 hasPublicationYear "2022" @default.
- W4289842794 type Work @default.
- W4289842794 citedByCount "0" @default.
- W4289842794 crossrefType "journal-article" @default.
- W4289842794 hasAuthorship W4289842794A5003911558 @default.
- W4289842794 hasAuthorship W4289842794A5008907207 @default.
- W4289842794 hasConcept C111368507 @default.
- W4289842794 hasConcept C119857082 @default.
- W4289842794 hasConcept C127313418 @default.
- W4289842794 hasConcept C139719470 @default.
- W4289842794 hasConcept C144024400 @default.
- W4289842794 hasConcept C149782125 @default.
- W4289842794 hasConcept C151730666 @default.
- W4289842794 hasConcept C154945302 @default.
- W4289842794 hasConcept C162324750 @default.
- W4289842794 hasConcept C163068380 @default.
- W4289842794 hasConcept C169258074 @default.
- W4289842794 hasConcept C181683161 @default.
- W4289842794 hasConcept C202353208 @default.
- W4289842794 hasConcept C2779343474 @default.
- W4289842794 hasConcept C2780299701 @default.
- W4289842794 hasConcept C2781013037 @default.
- W4289842794 hasConcept C30772137 @default.
- W4289842794 hasConcept C36289849 @default.
- W4289842794 hasConcept C41008148 @default.
- W4289842794 hasConcept C70153297 @default.
- W4289842794 hasConcept C86803240 @default.
- W4289842794 hasConceptScore W4289842794C111368507 @default.
- W4289842794 hasConceptScore W4289842794C119857082 @default.
- W4289842794 hasConceptScore W4289842794C127313418 @default.
- W4289842794 hasConceptScore W4289842794C139719470 @default.
- W4289842794 hasConceptScore W4289842794C144024400 @default.
- W4289842794 hasConceptScore W4289842794C149782125 @default.
- W4289842794 hasConceptScore W4289842794C151730666 @default.
- W4289842794 hasConceptScore W4289842794C154945302 @default.
- W4289842794 hasConceptScore W4289842794C162324750 @default.
- W4289842794 hasConceptScore W4289842794C163068380 @default.
- W4289842794 hasConceptScore W4289842794C169258074 @default.
- W4289842794 hasConceptScore W4289842794C181683161 @default.
- W4289842794 hasConceptScore W4289842794C202353208 @default.
- W4289842794 hasConceptScore W4289842794C2779343474 @default.
- W4289842794 hasConceptScore W4289842794C2780299701 @default.
- W4289842794 hasConceptScore W4289842794C2781013037 @default.
- W4289842794 hasConceptScore W4289842794C30772137 @default.
- W4289842794 hasConceptScore W4289842794C36289849 @default.
- W4289842794 hasConceptScore W4289842794C41008148 @default.
- W4289842794 hasConceptScore W4289842794C70153297 @default.
- W4289842794 hasConceptScore W4289842794C86803240 @default.
- W4289842794 hasIssue "8" @default.
- W4289842794 hasLocation W42898427941 @default.
- W4289842794 hasOpenAccess W4289842794 @default.
- W4289842794 hasPrimaryLocation W42898427941 @default.
- W4289842794 hasRelatedWork W2911455822 @default.
- W4289842794 hasRelatedWork W3121600579 @default.
- W4289842794 hasRelatedWork W3200719183 @default.
- W4289842794 hasRelatedWork W3204641204 @default.
- W4289842794 hasRelatedWork W3211596370 @default.
- W4289842794 hasRelatedWork W4281616679 @default.
- W4289842794 hasRelatedWork W4288057626 @default.
- W4289842794 hasRelatedWork W4289842794 @default.