Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289847498> ?p ?o ?g. }
- W4289847498 endingPage "141" @default.
- W4289847498 startingPage "128" @default.
- W4289847498 abstract "Abstract Background Metallic implants, which are inserted into the patient's body during trauma interventions, are the main cause of heavy artifacts in 3D X‐ray acquisitions. These artifacts then hinder the evaluation of the correct implant's positioning, thus leading to a disturbed patient's healing process and increased revision rates. Purpose This problem is tackled by so‐called metal artifact reduction (MAR) methods. This paper examines possible advances in the inpainting process of such MAR methods to decrease disruptive artifacts while simultaneously preserving important anatomical structures adjacent to the inserted implants. Methods In this paper, a learning‐based inpainting method for cone‐beam computed tomography is proposed that couples a convolutional neural network (CNN) with an estimated metal path length as prior knowledge. Further, the proposed method is solely trained and evaluated on real measured data. Results The proposed inpainting approach shows advantages over the inpainting method used by the currently clinically approved frequency split metal artifact reduction (fsMAR) method as well as the learning‐based state‐of‐the‐art (SOTA) method PConv‐Net. The major improvement of the proposed inpainting method lies in the ability to correctly preserve important anatomical structures in those regions adjacent to the metal implants. Especially these regions are highly important for a correct implant's positioning in an intraoperative setup. Using the proposed inpainting, the corresponding MAR volumes reach a mean structural similarity index measure (SSIM) score of 0.9974 and outperform the other methods by up to 6 dB on single slices regarding the peak signal‐to‐noise ratio (PSNR) score. Furthermore, it can be shown that the proposed method can generalize to clinical cases at hand. Conclusions In this paper, a learning‐based inpainting network is proposed that leverages prior knowledge about the metal path length of the inserted implant. Evaluations on real measured data reveal an increased overall MAR performance, especially regarding the preservation of anatomical structures adjacent to the inserted implants. Further evaluations suggest the ability of the proposed approach to generalize to clinical cases." @default.
- W4289847498 created "2022-08-05" @default.
- W4289847498 creator A5017315239 @default.
- W4289847498 creator A5032499810 @default.
- W4289847498 creator A5041199914 @default.
- W4289847498 creator A5062481511 @default.
- W4289847498 date "2022-08-17" @default.
- W4289847498 modified "2023-09-26" @default.
- W4289847498 title "DL‐based inpainting for metal artifact reduction for cone beam CT using metal path length information" @default.
- W4289847498 cites W1677182931 @default.
- W4289847498 cites W1901129140 @default.
- W4289847498 cites W2027505057 @default.
- W4289847498 cites W2029927888 @default.
- W4289847498 cites W2034280206 @default.
- W4289847498 cites W2079127706 @default.
- W4289847498 cites W2133665775 @default.
- W4289847498 cites W2754357950 @default.
- W4289847498 cites W2784480683 @default.
- W4289847498 cites W2798365772 @default.
- W4289847498 cites W2884912413 @default.
- W4289847498 cites W2902232758 @default.
- W4289847498 cites W2963869863 @default.
- W4289847498 cites W2963891322 @default.
- W4289847498 cites W2982763192 @default.
- W4289847498 cites W3043547428 @default.
- W4289847498 cites W3087119976 @default.
- W4289847498 cites W3092255767 @default.
- W4289847498 cites W3112701542 @default.
- W4289847498 cites W3125908253 @default.
- W4289847498 cites W3138258327 @default.
- W4289847498 cites W626427215 @default.
- W4289847498 doi "https://doi.org/10.1002/mp.15909" @default.
- W4289847498 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35925029" @default.
- W4289847498 hasPublicationYear "2022" @default.
- W4289847498 type Work @default.
- W4289847498 citedByCount "0" @default.
- W4289847498 crossrefType "journal-article" @default.
- W4289847498 hasAuthorship W4289847498A5017315239 @default.
- W4289847498 hasAuthorship W4289847498A5032499810 @default.
- W4289847498 hasAuthorship W4289847498A5041199914 @default.
- W4289847498 hasAuthorship W4289847498A5062481511 @default.
- W4289847498 hasConcept C103278499 @default.
- W4289847498 hasConcept C111335779 @default.
- W4289847498 hasConcept C111919701 @default.
- W4289847498 hasConcept C115961682 @default.
- W4289847498 hasConcept C11727466 @default.
- W4289847498 hasConcept C126838900 @default.
- W4289847498 hasConcept C138885662 @default.
- W4289847498 hasConcept C153180895 @default.
- W4289847498 hasConcept C154945302 @default.
- W4289847498 hasConcept C199360897 @default.
- W4289847498 hasConcept C2524010 @default.
- W4289847498 hasConcept C2776401178 @default.
- W4289847498 hasConcept C2777735758 @default.
- W4289847498 hasConcept C2779010991 @default.
- W4289847498 hasConcept C2779813781 @default.
- W4289847498 hasConcept C31972630 @default.
- W4289847498 hasConcept C33923547 @default.
- W4289847498 hasConcept C41008148 @default.
- W4289847498 hasConcept C41895202 @default.
- W4289847498 hasConcept C544519230 @default.
- W4289847498 hasConcept C71924100 @default.
- W4289847498 hasConcept C81363708 @default.
- W4289847498 hasConcept C98045186 @default.
- W4289847498 hasConceptScore W4289847498C103278499 @default.
- W4289847498 hasConceptScore W4289847498C111335779 @default.
- W4289847498 hasConceptScore W4289847498C111919701 @default.
- W4289847498 hasConceptScore W4289847498C115961682 @default.
- W4289847498 hasConceptScore W4289847498C11727466 @default.
- W4289847498 hasConceptScore W4289847498C126838900 @default.
- W4289847498 hasConceptScore W4289847498C138885662 @default.
- W4289847498 hasConceptScore W4289847498C153180895 @default.
- W4289847498 hasConceptScore W4289847498C154945302 @default.
- W4289847498 hasConceptScore W4289847498C199360897 @default.
- W4289847498 hasConceptScore W4289847498C2524010 @default.
- W4289847498 hasConceptScore W4289847498C2776401178 @default.
- W4289847498 hasConceptScore W4289847498C2777735758 @default.
- W4289847498 hasConceptScore W4289847498C2779010991 @default.
- W4289847498 hasConceptScore W4289847498C2779813781 @default.
- W4289847498 hasConceptScore W4289847498C31972630 @default.
- W4289847498 hasConceptScore W4289847498C33923547 @default.
- W4289847498 hasConceptScore W4289847498C41008148 @default.
- W4289847498 hasConceptScore W4289847498C41895202 @default.
- W4289847498 hasConceptScore W4289847498C544519230 @default.
- W4289847498 hasConceptScore W4289847498C71924100 @default.
- W4289847498 hasConceptScore W4289847498C81363708 @default.
- W4289847498 hasConceptScore W4289847498C98045186 @default.
- W4289847498 hasFunder F4320327217 @default.
- W4289847498 hasFunder F4320334678 @default.
- W4289847498 hasIssue "1" @default.
- W4289847498 hasLocation W42898474981 @default.
- W4289847498 hasLocation W42898474982 @default.
- W4289847498 hasOpenAccess W4289847498 @default.
- W4289847498 hasPrimaryLocation W42898474981 @default.
- W4289847498 hasRelatedWork W1574999717 @default.
- W4289847498 hasRelatedWork W166251047 @default.
- W4289847498 hasRelatedWork W2020564930 @default.
- W4289847498 hasRelatedWork W2059339452 @default.