Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289866588> ?p ?o ?g. }
- W4289866588 abstract "Thanks to billions of users in online social networks (OSNs), viral marketing becomes one of the most effective promotion channels for various new products or campaigns. Influence maximization is a classic problem in viral marketing, which has been extensively studied in the past two decades. Existing algorithms for influence maximization, however, mostly focus on single machine processing. To address the influence maximization problem on a massive scale, we design distributed algorithms via a cluster of machines, which can effectively speed up the computation while maintaining the state-of-the-art (1 -1/e-c)-approximation guarantee. Our distributed algorithms consist of two building blocks: (i) distributed reverse influence sampling, and (ii) element-distributed maximum coverage. We carry out extensive experiments on real datasets with millions of nodes and billions of edges to demonstrate the scalability of our distributed algorithms for both influence maximization and maximum coverage. In particular, our distributed algorithms accelerate the state-of-the-art IMM algorithm by 31x-56x times using a machine with 64 cores." @default.
- W4289866588 created "2022-08-05" @default.
- W4289866588 creator A5015527156 @default.
- W4289866588 creator A5075588839 @default.
- W4289866588 creator A5077270486 @default.
- W4289866588 creator A5084367706 @default.
- W4289866588 date "2022-05-01" @default.
- W4289866588 modified "2023-10-16" @default.
- W4289866588 title "Distributed Influence Maximization for Large-Scale Online Social Networks" @default.
- W4289866588 cites W132665423 @default.
- W4289866588 cites W136235603 @default.
- W4289866588 cites W1680189815 @default.
- W4289866588 cites W1953381612 @default.
- W4289866588 cites W1981141219 @default.
- W4289866588 cites W1984069252 @default.
- W4289866588 cites W1987316501 @default.
- W4289866588 cites W1990570693 @default.
- W4289866588 cites W1991635064 @default.
- W4289866588 cites W2002240881 @default.
- W4289866588 cites W2030378176 @default.
- W4289866588 cites W2035165116 @default.
- W4289866588 cites W2037568170 @default.
- W4289866588 cites W2042123098 @default.
- W4289866588 cites W2061820396 @default.
- W4289866588 cites W2070199170 @default.
- W4289866588 cites W2101196063 @default.
- W4289866588 cites W2101246692 @default.
- W4289866588 cites W2103209441 @default.
- W4289866588 cites W2108278206 @default.
- W4289866588 cites W2108858998 @default.
- W4289866588 cites W2128916364 @default.
- W4289866588 cites W2132801025 @default.
- W4289866588 cites W2139430401 @default.
- W4289866588 cites W2141403143 @default.
- W4289866588 cites W2143996311 @default.
- W4289866588 cites W2158204848 @default.
- W4289866588 cites W2160411082 @default.
- W4289866588 cites W2166470254 @default.
- W4289866588 cites W2396832258 @default.
- W4289866588 cites W2402355993 @default.
- W4289866588 cites W2548533766 @default.
- W4289866588 cites W2560800565 @default.
- W4289866588 cites W2565441308 @default.
- W4289866588 cites W2612735401 @default.
- W4289866588 cites W2619759446 @default.
- W4289866588 cites W2619906413 @default.
- W4289866588 cites W2778890450 @default.
- W4289866588 cites W2792522996 @default.
- W4289866588 cites W2798654119 @default.
- W4289866588 cites W2807792147 @default.
- W4289866588 cites W2889128735 @default.
- W4289866588 cites W2900724239 @default.
- W4289866588 cites W2962773920 @default.
- W4289866588 cites W2963798022 @default.
- W4289866588 cites W3029231733 @default.
- W4289866588 cites W3029654587 @default.
- W4289866588 cites W3032945343 @default.
- W4289866588 cites W3038050450 @default.
- W4289866588 cites W3100610286 @default.
- W4289866588 cites W3175020564 @default.
- W4289866588 cites W4291719230 @default.
- W4289866588 cites W4301207233 @default.
- W4289866588 cites W68645389 @default.
- W4289866588 doi "https://doi.org/10.1109/icde53745.2022.00011" @default.
- W4289866588 hasPublicationYear "2022" @default.
- W4289866588 type Work @default.
- W4289866588 citedByCount "3" @default.
- W4289866588 countsByYear W42898665882023 @default.
- W4289866588 crossrefType "proceedings-article" @default.
- W4289866588 hasAuthorship W4289866588A5015527156 @default.
- W4289866588 hasAuthorship W4289866588A5075588839 @default.
- W4289866588 hasAuthorship W4289866588A5077270486 @default.
- W4289866588 hasAuthorship W4289866588A5084367706 @default.
- W4289866588 hasConcept C11413529 @default.
- W4289866588 hasConcept C120314980 @default.
- W4289866588 hasConcept C120665830 @default.
- W4289866588 hasConcept C121332964 @default.
- W4289866588 hasConcept C126255220 @default.
- W4289866588 hasConcept C130120984 @default.
- W4289866588 hasConcept C136764020 @default.
- W4289866588 hasConcept C187008535 @default.
- W4289866588 hasConcept C192209626 @default.
- W4289866588 hasConcept C2776330181 @default.
- W4289866588 hasConcept C2778755073 @default.
- W4289866588 hasConcept C33923547 @default.
- W4289866588 hasConcept C41008148 @default.
- W4289866588 hasConcept C45374587 @default.
- W4289866588 hasConcept C48044578 @default.
- W4289866588 hasConcept C518677369 @default.
- W4289866588 hasConcept C62520636 @default.
- W4289866588 hasConcept C77088390 @default.
- W4289866588 hasConceptScore W4289866588C11413529 @default.
- W4289866588 hasConceptScore W4289866588C120314980 @default.
- W4289866588 hasConceptScore W4289866588C120665830 @default.
- W4289866588 hasConceptScore W4289866588C121332964 @default.
- W4289866588 hasConceptScore W4289866588C126255220 @default.
- W4289866588 hasConceptScore W4289866588C130120984 @default.
- W4289866588 hasConceptScore W4289866588C136764020 @default.
- W4289866588 hasConceptScore W4289866588C187008535 @default.
- W4289866588 hasConceptScore W4289866588C192209626 @default.