Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289883886> ?p ?o ?g. }
- W4289883886 endingPage "206" @default.
- W4289883886 startingPage "185" @default.
- W4289883886 abstract "Membrane-based water and wastewater treatment have been identified as the key technology employed in chemical engineering. This technology has good ability for industrial practices owing to its cost-effectiveness, eco-friendly nature, and simplicity for upscaling. A precise mathematical model for these processes can be beneficial to foresee the performance of the separation. Typical optimization techniques are accomplished by differing one of the operational factors for a time. This is extremely time-consuming, expensive, and cannot confirm whether the optimal condition has been identified. Thus, a general technique is employed to fit a polynomial regression model for the operational factors and to execute numerical multi-factor optimization for the developed model.One of the flexible tools, response surface methodology (RSM), is employed to design experiments, empirical model development, and multi-factor optimization. Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) are used for modeling and simulation. ANN is based on computational means to mimic the processing power of a biological brain. It can model and simulate remarkably sophisticated non-linear systems. But ANFIS blends the abilities of both a fuzzy inference system (FIS) and an adaptive neural network. They can explain hidden logic by their computational power of neural networks and fuzzy interface capabilities. The crucial step following model development is the optimization of operational factors. Optimization technique is an important step that makes substantial progress for the performance of the membrane process. Hence, in this chapter, crucial factors for the membrane-based process and integrating conventional RSM, ANN and ANFIS models with genetic algorithm (GA) to compare and evaluate the performance of orthodox models and by integrating non-conventional GA to model optimization." @default.
- W4289883886 created "2022-08-05" @default.
- W4289883886 creator A5029529812 @default.
- W4289883886 creator A5079261377 @default.
- W4289883886 creator A5087818561 @default.
- W4289883886 date "2022-01-01" @default.
- W4289883886 modified "2023-10-14" @default.
- W4289883886 title "Parameter optimization and modelling of forward osmosis membrane separation process" @default.
- W4289883886 cites W1764848183 @default.
- W4289883886 cites W1816952670 @default.
- W4289883886 cites W1872089867 @default.
- W4289883886 cites W1967581779 @default.
- W4289883886 cites W1973359788 @default.
- W4289883886 cites W1976227718 @default.
- W4289883886 cites W1983834805 @default.
- W4289883886 cites W1984709193 @default.
- W4289883886 cites W1990458579 @default.
- W4289883886 cites W1991969312 @default.
- W4289883886 cites W1992437125 @default.
- W4289883886 cites W1993744741 @default.
- W4289883886 cites W1995341919 @default.
- W4289883886 cites W1997556089 @default.
- W4289883886 cites W1998890466 @default.
- W4289883886 cites W2003457339 @default.
- W4289883886 cites W2004847971 @default.
- W4289883886 cites W2014571742 @default.
- W4289883886 cites W2016710655 @default.
- W4289883886 cites W2019207321 @default.
- W4289883886 cites W2026132179 @default.
- W4289883886 cites W2027253598 @default.
- W4289883886 cites W2028703231 @default.
- W4289883886 cites W2029568689 @default.
- W4289883886 cites W2029874060 @default.
- W4289883886 cites W2033509028 @default.
- W4289883886 cites W2049488695 @default.
- W4289883886 cites W2054727583 @default.
- W4289883886 cites W2056656726 @default.
- W4289883886 cites W2057897477 @default.
- W4289883886 cites W2085596808 @default.
- W4289883886 cites W2101834110 @default.
- W4289883886 cites W2109453811 @default.
- W4289883886 cites W2109968261 @default.
- W4289883886 cites W2140547867 @default.
- W4289883886 cites W2141787691 @default.
- W4289883886 cites W2190444793 @default.
- W4289883886 cites W2254168642 @default.
- W4289883886 cites W2354029907 @default.
- W4289883886 cites W2506935491 @default.
- W4289883886 cites W2611991241 @default.
- W4289883886 cites W2735206546 @default.
- W4289883886 cites W2750072557 @default.
- W4289883886 cites W2758955523 @default.
- W4289883886 cites W2986329555 @default.
- W4289883886 cites W2989757888 @default.
- W4289883886 cites W3013623430 @default.
- W4289883886 cites W3016624250 @default.
- W4289883886 cites W3022667165 @default.
- W4289883886 cites W3115508352 @default.
- W4289883886 cites W3130292883 @default.
- W4289883886 cites W3150027346 @default.
- W4289883886 cites W4252586355 @default.
- W4289883886 doi "https://doi.org/10.1016/b978-0-323-90627-2.00012-5" @default.
- W4289883886 hasPublicationYear "2022" @default.
- W4289883886 type Work @default.
- W4289883886 citedByCount "0" @default.
- W4289883886 crossrefType "book-chapter" @default.
- W4289883886 hasAuthorship W4289883886A5029529812 @default.
- W4289883886 hasAuthorship W4289883886A5079261377 @default.
- W4289883886 hasAuthorship W4289883886A5087818561 @default.
- W4289883886 hasConcept C111919701 @default.
- W4289883886 hasConcept C119857082 @default.
- W4289883886 hasConcept C126255220 @default.
- W4289883886 hasConcept C127413603 @default.
- W4289883886 hasConcept C133731056 @default.
- W4289883886 hasConcept C150077022 @default.
- W4289883886 hasConcept C154945302 @default.
- W4289883886 hasConcept C186108316 @default.
- W4289883886 hasConcept C195975749 @default.
- W4289883886 hasConcept C29470771 @default.
- W4289883886 hasConcept C33923547 @default.
- W4289883886 hasConcept C41008148 @default.
- W4289883886 hasConcept C50644808 @default.
- W4289883886 hasConcept C58166 @default.
- W4289883886 hasConcept C98045186 @default.
- W4289883886 hasConceptScore W4289883886C111919701 @default.
- W4289883886 hasConceptScore W4289883886C119857082 @default.
- W4289883886 hasConceptScore W4289883886C126255220 @default.
- W4289883886 hasConceptScore W4289883886C127413603 @default.
- W4289883886 hasConceptScore W4289883886C133731056 @default.
- W4289883886 hasConceptScore W4289883886C150077022 @default.
- W4289883886 hasConceptScore W4289883886C154945302 @default.
- W4289883886 hasConceptScore W4289883886C186108316 @default.
- W4289883886 hasConceptScore W4289883886C195975749 @default.
- W4289883886 hasConceptScore W4289883886C29470771 @default.
- W4289883886 hasConceptScore W4289883886C33923547 @default.
- W4289883886 hasConceptScore W4289883886C41008148 @default.
- W4289883886 hasConceptScore W4289883886C50644808 @default.
- W4289883886 hasConceptScore W4289883886C58166 @default.