Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289885596> ?p ?o ?g. }
- W4289885596 endingPage "4053" @default.
- W4289885596 startingPage "4033" @default.
- W4289885596 abstract "Abstract. Groundwater monitoring and specific collection of data on the spatiotemporal dynamics of the aquifer are prerequisites for effective groundwater management and determine nearly all downstream management decisions. An optimally designed groundwater monitoring network (GMN) will provide the maximum information content at the minimum cost (Pareto optimum). In this study, PySensors, a Python package containing scalable, data-driven algorithms for sparse sensor selection and signal reconstruction with dimensionality reduction is applied to an existing GMN in 1D (hydrographs) and 2D (gridded groundwater contour maps). The algorithm first fits a basis object to the training data and then applies a computationally efficient QR algorithm that ranks existing monitoring wells (for 1D) or suitable sites for additional monitoring (for 2D) in order of importance, based on the state reconstruction of this tailored basis. This procedure enables a network to be reduced or extended along the Pareto front. Moreover, we investigate the effect of basis choice on reconstruction performance by comparing three types typically used for sparse sensor selection (i.e., identity, random projection, and SVD, respectively, PCA). We define a gridded cost function for the extension case that penalizes unsuitable locations. Our results show that the proposed approach performs better than the best randomly selected wells. The optimized reduction makes it possible to adequately reconstruct the removed hydrographs with a highly reduced subset with low loss. With a GMN reduced by 94 %, an average absolute reconstruction accuracy of 0.1 m is achieved, in addition to 0.05 m with a reduction by 69 % and 0.01 m with 18 %." @default.
- W4289885596 created "2022-08-05" @default.
- W4289885596 creator A5000177867 @default.
- W4289885596 creator A5061666708 @default.
- W4289885596 creator A5074717615 @default.
- W4289885596 date "2022-08-05" @default.
- W4289885596 modified "2023-09-30" @default.
- W4289885596 title "Spatiotemporal optimization of groundwater monitoring networks using data-driven sparse sensing methods" @default.
- W4289885596 cites W1481674326 @default.
- W4289885596 cites W1558018944 @default.
- W4289885596 cites W1655071942 @default.
- W4289885596 cites W1900705253 @default.
- W4289885596 cites W1923364536 @default.
- W4289885596 cites W1967292503 @default.
- W4289885596 cites W1967359434 @default.
- W4289885596 cites W1979892370 @default.
- W4289885596 cites W2005423095 @default.
- W4289885596 cites W2010180256 @default.
- W4289885596 cites W2010843965 @default.
- W4289885596 cites W2013740555 @default.
- W4289885596 cites W2018526478 @default.
- W4289885596 cites W2025516544 @default.
- W4289885596 cites W2028141904 @default.
- W4289885596 cites W2033904036 @default.
- W4289885596 cites W2041836310 @default.
- W4289885596 cites W2048970750 @default.
- W4289885596 cites W2049797651 @default.
- W4289885596 cites W2058998445 @default.
- W4289885596 cites W2063778450 @default.
- W4289885596 cites W2090137585 @default.
- W4289885596 cites W2094873228 @default.
- W4289885596 cites W2103018328 @default.
- W4289885596 cites W2104266187 @default.
- W4289885596 cites W2117756735 @default.
- W4289885596 cites W2119667497 @default.
- W4289885596 cites W2138763184 @default.
- W4289885596 cites W2260169723 @default.
- W4289885596 cites W2515444585 @default.
- W4289885596 cites W2519719722 @default.
- W4289885596 cites W2537654511 @default.
- W4289885596 cites W2540556405 @default.
- W4289885596 cites W2641205204 @default.
- W4289885596 cites W2745133616 @default.
- W4289885596 cites W2748426722 @default.
- W4289885596 cites W2754031108 @default.
- W4289885596 cites W2770171409 @default.
- W4289885596 cites W2782335841 @default.
- W4289885596 cites W2801130516 @default.
- W4289885596 cites W2808375867 @default.
- W4289885596 cites W2808781048 @default.
- W4289885596 cites W2898188838 @default.
- W4289885596 cites W2948510931 @default.
- W4289885596 cites W2954648193 @default.
- W4289885596 cites W2964017122 @default.
- W4289885596 cites W2987255275 @default.
- W4289885596 cites W2995297119 @default.
- W4289885596 cites W3096771061 @default.
- W4289885596 cites W3104009841 @default.
- W4289885596 cites W3129831479 @default.
- W4289885596 cites W3145455973 @default.
- W4289885596 cites W3161061311 @default.
- W4289885596 cites W3191704786 @default.
- W4289885596 cites W3206922759 @default.
- W4289885596 cites W3209796424 @default.
- W4289885596 cites W4210968171 @default.
- W4289885596 cites W4250955649 @default.
- W4289885596 cites W4252713891 @default.
- W4289885596 doi "https://doi.org/10.5194/hess-26-4033-2022" @default.
- W4289885596 hasPublicationYear "2022" @default.
- W4289885596 type Work @default.
- W4289885596 citedByCount "2" @default.
- W4289885596 countsByYear W42898855962023 @default.
- W4289885596 crossrefType "journal-article" @default.
- W4289885596 hasAuthorship W4289885596A5000177867 @default.
- W4289885596 hasAuthorship W4289885596A5061666708 @default.
- W4289885596 hasAuthorship W4289885596A5074717615 @default.
- W4289885596 hasBestOaLocation W42898855961 @default.
- W4289885596 hasConcept C11413529 @default.
- W4289885596 hasConcept C124101348 @default.
- W4289885596 hasConcept C126255220 @default.
- W4289885596 hasConcept C154936535 @default.
- W4289885596 hasConcept C154945302 @default.
- W4289885596 hasConcept C18903297 @default.
- W4289885596 hasConcept C33923547 @default.
- W4289885596 hasConcept C41008148 @default.
- W4289885596 hasConcept C48044578 @default.
- W4289885596 hasConcept C50477045 @default.
- W4289885596 hasConcept C70518039 @default.
- W4289885596 hasConcept C77088390 @default.
- W4289885596 hasConcept C86803240 @default.
- W4289885596 hasConceptScore W4289885596C11413529 @default.
- W4289885596 hasConceptScore W4289885596C124101348 @default.
- W4289885596 hasConceptScore W4289885596C126255220 @default.
- W4289885596 hasConceptScore W4289885596C154936535 @default.
- W4289885596 hasConceptScore W4289885596C154945302 @default.
- W4289885596 hasConceptScore W4289885596C18903297 @default.
- W4289885596 hasConceptScore W4289885596C33923547 @default.
- W4289885596 hasConceptScore W4289885596C41008148 @default.