Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289888528> ?p ?o ?g. }
- W4289888528 abstract "Common commercial porcine acellular dermal matrix (PADM) products take the form of a thin membrane. Given its dense structure, delaying vascularization after implantation remains an issue to be solved. In addition, overlaying multiple sheets to address deep wounds and large tissue defects that are difficult to repair by self-tissues could hinder tissue ingrowth, angiogenesis, and integration. Here, we creatively prepared PADM microparticles through a homogenizing treatment and crosslinked them to ADM sponges by thermal crosslinking (VT-ADM) and thermal-glutaraldehyde crosslinking (GA-ADM). The resulting VT-ADM was thicker than GA-ADM, and both maintained the natural dermal matrix microstructure and thermal stability. The porosity of GA-ADM (mean 82%) was lower than that of VT-ADM (mean 90.2%), but the mechanical strength and hydrophilicity were significantly higher. The two types of ADM sponges showed no obvious difference in cell adhesion and proliferation without cytotoxicity. Furthermore, the human adipose stem cells were co-cultured with ADM sponges which promoted proliferation, tube formation, and migration of endothelial cells, and the GA-ADM group exhibited better migration behavior. There were no markable differences among expressions of pro-angiogenesis genes, including vascular endothelial growth factor, insulin-like growth factor-1, and epidermal growth factor. In a nude mouse model, the VT-ADM and GA-ADM pre-cultured with human adipose stem cells for 1 week in advance were implanted subcutaneously. The VT-ADM and the GA-ADM showed great histocompatibility without local redness, swelling, or necrosis. The vascular density of the local skin flap above the material was visualized using indocyanine green and showed no statistical difference between the two groups. The collagen tissue deposition in the pores and vessel formation within the sponges increased with time. Although VT-ADM had a higher degradation rate in vivo, the integrity of the two scaffolds was preserved. Collectively, the VT-ADM and the GA-ADM retained a natural matrix structure and presented biocompatibility. Thus, the above-mentioned two crosslinking methods for ADM sponges are safe and practicable. The novel ADM sponges with good physicochemical and biological properties are no longer limited to membrane tissue regeneration but could also realize structure remodeling where they act as scaffolds for a soft tissue filler and three-dimensional reconstruction of the tissue with strength requirements." @default.
- W4289888528 created "2022-08-05" @default.
- W4289888528 creator A5011248543 @default.
- W4289888528 creator A5014148210 @default.
- W4289888528 creator A5015152606 @default.
- W4289888528 creator A5020478633 @default.
- W4289888528 creator A5034164330 @default.
- W4289888528 creator A5044194012 @default.
- W4289888528 creator A5064092025 @default.
- W4289888528 creator A5079414919 @default.
- W4289888528 creator A5086340199 @default.
- W4289888528 date "2022-08-05" @default.
- W4289888528 modified "2023-10-01" @default.
- W4289888528 title "A Comparative Study on Two Types of Porcine Acellular Dermal Matrix Sponges Prepared by Thermal Crosslinking and Thermal-Glutaraldehyde Crosslinking Matrix Microparticles" @default.
- W4289888528 cites W1592045168 @default.
- W4289888528 cites W1990166357 @default.
- W4289888528 cites W1992980274 @default.
- W4289888528 cites W1994121292 @default.
- W4289888528 cites W2025371271 @default.
- W4289888528 cites W2043321717 @default.
- W4289888528 cites W2086837967 @default.
- W4289888528 cites W2087426628 @default.
- W4289888528 cites W2160970947 @default.
- W4289888528 cites W2167645403 @default.
- W4289888528 cites W2170257836 @default.
- W4289888528 cites W2230487954 @default.
- W4289888528 cites W2238374854 @default.
- W4289888528 cites W2291796933 @default.
- W4289888528 cites W2758814689 @default.
- W4289888528 cites W2781769154 @default.
- W4289888528 cites W2783959014 @default.
- W4289888528 cites W2789595906 @default.
- W4289888528 cites W2889372700 @default.
- W4289888528 cites W2896162363 @default.
- W4289888528 cites W2901399881 @default.
- W4289888528 cites W2913688187 @default.
- W4289888528 cites W2923844489 @default.
- W4289888528 cites W2951368182 @default.
- W4289888528 cites W2980693842 @default.
- W4289888528 cites W2982407277 @default.
- W4289888528 cites W2984280801 @default.
- W4289888528 cites W3000393277 @default.
- W4289888528 cites W3015915882 @default.
- W4289888528 cites W3047829973 @default.
- W4289888528 cites W3084049332 @default.
- W4289888528 cites W3134075692 @default.
- W4289888528 cites W3138878300 @default.
- W4289888528 cites W3141438087 @default.
- W4289888528 cites W3165243389 @default.
- W4289888528 cites W3168856962 @default.
- W4289888528 cites W3182446152 @default.
- W4289888528 cites W3199048786 @default.
- W4289888528 cites W3203591979 @default.
- W4289888528 cites W3203603371 @default.
- W4289888528 cites W3207134863 @default.
- W4289888528 cites W3209627144 @default.
- W4289888528 cites W3216427987 @default.
- W4289888528 cites W3217003873 @default.
- W4289888528 cites W4205889748 @default.
- W4289888528 cites W4210682198 @default.
- W4289888528 cites W4210841262 @default.
- W4289888528 cites W4212839393 @default.
- W4289888528 cites W4220669163 @default.
- W4289888528 cites W4220692691 @default.
- W4289888528 cites W4221037115 @default.
- W4289888528 cites W4221053393 @default.
- W4289888528 cites W4224236625 @default.
- W4289888528 cites W957835675 @default.
- W4289888528 doi "https://doi.org/10.3389/fbioe.2022.938798" @default.
- W4289888528 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35992352" @default.
- W4289888528 hasPublicationYear "2022" @default.
- W4289888528 type Work @default.
- W4289888528 citedByCount "2" @default.
- W4289888528 countsByYear W42898885282023 @default.
- W4289888528 crossrefType "journal-article" @default.
- W4289888528 hasAuthorship W4289888528A5011248543 @default.
- W4289888528 hasAuthorship W4289888528A5014148210 @default.
- W4289888528 hasAuthorship W4289888528A5015152606 @default.
- W4289888528 hasAuthorship W4289888528A5020478633 @default.
- W4289888528 hasAuthorship W4289888528A5034164330 @default.
- W4289888528 hasAuthorship W4289888528A5044194012 @default.
- W4289888528 hasAuthorship W4289888528A5064092025 @default.
- W4289888528 hasAuthorship W4289888528A5079414919 @default.
- W4289888528 hasAuthorship W4289888528A5086340199 @default.
- W4289888528 hasBestOaLocation W42898885281 @default.
- W4289888528 hasConcept C136229726 @default.
- W4289888528 hasConcept C159985019 @default.
- W4289888528 hasConcept C167734588 @default.
- W4289888528 hasConcept C171089720 @default.
- W4289888528 hasConcept C185592680 @default.
- W4289888528 hasConcept C192562407 @default.
- W4289888528 hasConcept C203014093 @default.
- W4289888528 hasConcept C2777025900 @default.
- W4289888528 hasConcept C2777529624 @default.
- W4289888528 hasConcept C2780269544 @default.
- W4289888528 hasConcept C2780394083 @default.
- W4289888528 hasConcept C43617362 @default.
- W4289888528 hasConcept C49892992 @default.
- W4289888528 hasConcept C502942594 @default.
- W4289888528 hasConcept C55493867 @default.