Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289928105> ?p ?o ?g. }
- W4289928105 endingPage "657" @default.
- W4289928105 startingPage "650" @default.
- W4289928105 abstract "The integration of an artificial intelligence tool into pathologists' workflow may lead to a more accurate and timely diagnosis of melanocytic lesions, directly patient care. The objective of this study was to create and evaluate the performance of such a model in achieving clinical-grade diagnoses of Spitz nevi, dermal and junctional melanocytic nevi, and melanomas.We created a beginner-level training environment by teaching our algorithm to perform cytologic inferences on 136,216 manually annotated tiles of hematoxylin and eosin-stained slides consisting of unequivocal melanocytic nevi, Spitz nevi, and invasive melanoma cases. We sequentially trained and tested our network to provide a final diagnosis-classification on 39 cases in total. Positive predictive value (precision) and sensitivity (recall) were used to measure our performance.The tile-classification algorithm predicted the 136,216 irrelevant, melanoma, melanocytic nevi, and Spitz nevi tiles at sensitivities of 96%, 93%, 94% and 73%, respectively. The final trained model was able to correctly classify and predict the correct diagnosis in 85.7% of unseen cases (n = 28), reporting at or near screening-level performances for precision and recall of melanoma (76.2%, 100.0%), melanocytic nevi (100.0%, 75.0%), and Spitz nevi (100.0%, 75.0%).Our pilot study proves that convolutional networks trained on cellular morphology to classify melanocytic proliferations can be used as a powerful tool to assist pathologists in screening for melanoma versus other benign lesions." @default.
- W4289928105 created "2022-08-06" @default.
- W4289928105 creator A5000946095 @default.
- W4289928105 creator A5010876287 @default.
- W4289928105 creator A5012807756 @default.
- W4289928105 creator A5019271298 @default.
- W4289928105 creator A5022675177 @default.
- W4289928105 creator A5033599904 @default.
- W4289928105 creator A5043890127 @default.
- W4289928105 creator A5049843981 @default.
- W4289928105 creator A5052682095 @default.
- W4289928105 creator A5060012183 @default.
- W4289928105 creator A5060756784 @default.
- W4289928105 creator A5078124875 @default.
- W4289928105 creator A5086559201 @default.
- W4289928105 creator A5089931885 @default.
- W4289928105 date "2022-07-19" @default.
- W4289928105 modified "2023-10-16" @default.
- W4289928105 title "Histologic Screening of Malignant Melanoma, Spitz, Dermal and Junctional Melanocytic Nevi Using a Deep Learning Model" @default.
- W4289928105 cites W1943557071 @default.
- W4289928105 cites W1971941564 @default.
- W4289928105 cites W2001894998 @default.
- W4289928105 cites W2035683008 @default.
- W4289928105 cites W2055841930 @default.
- W4289928105 cites W2057343036 @default.
- W4289928105 cites W2120061605 @default.
- W4289928105 cites W2170170186 @default.
- W4289928105 cites W2592929672 @default.
- W4289928105 cites W2751048052 @default.
- W4289928105 cites W2883198641 @default.
- W4289928105 cites W2883545264 @default.
- W4289928105 cites W2883713833 @default.
- W4289928105 cites W2885500855 @default.
- W4289928105 cites W2891595725 @default.
- W4289928105 cites W2894398812 @default.
- W4289928105 cites W2913510405 @default.
- W4289928105 cites W2919115771 @default.
- W4289928105 cites W2956154093 @default.
- W4289928105 cites W2956228567 @default.
- W4289928105 cites W2957792382 @default.
- W4289928105 cites W2963258365 @default.
- W4289928105 cites W2979376714 @default.
- W4289928105 cites W2981681184 @default.
- W4289928105 cites W2983138989 @default.
- W4289928105 cites W3013387448 @default.
- W4289928105 cites W3081386409 @default.
- W4289928105 cites W3148150040 @default.
- W4289928105 doi "https://doi.org/10.1097/dad.0000000000002232" @default.
- W4289928105 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35925282" @default.
- W4289928105 hasPublicationYear "2022" @default.
- W4289928105 type Work @default.
- W4289928105 citedByCount "2" @default.
- W4289928105 countsByYear W42899281052023 @default.
- W4289928105 crossrefType "journal-article" @default.
- W4289928105 hasAuthorship W4289928105A5000946095 @default.
- W4289928105 hasAuthorship W4289928105A5010876287 @default.
- W4289928105 hasAuthorship W4289928105A5012807756 @default.
- W4289928105 hasAuthorship W4289928105A5019271298 @default.
- W4289928105 hasAuthorship W4289928105A5022675177 @default.
- W4289928105 hasAuthorship W4289928105A5033599904 @default.
- W4289928105 hasAuthorship W4289928105A5043890127 @default.
- W4289928105 hasAuthorship W4289928105A5049843981 @default.
- W4289928105 hasAuthorship W4289928105A5052682095 @default.
- W4289928105 hasAuthorship W4289928105A5060012183 @default.
- W4289928105 hasAuthorship W4289928105A5060756784 @default.
- W4289928105 hasAuthorship W4289928105A5078124875 @default.
- W4289928105 hasAuthorship W4289928105A5086559201 @default.
- W4289928105 hasAuthorship W4289928105A5089931885 @default.
- W4289928105 hasConcept C125473707 @default.
- W4289928105 hasConcept C126838900 @default.
- W4289928105 hasConcept C142724271 @default.
- W4289928105 hasConcept C16005928 @default.
- W4289928105 hasConcept C2776294769 @default.
- W4289928105 hasConcept C2777411683 @default.
- W4289928105 hasConcept C2777658100 @default.
- W4289928105 hasConcept C2779323059 @default.
- W4289928105 hasConcept C2991914496 @default.
- W4289928105 hasConcept C3020132585 @default.
- W4289928105 hasConcept C502942594 @default.
- W4289928105 hasConcept C534262118 @default.
- W4289928105 hasConcept C71924100 @default.
- W4289928105 hasConcept C74864618 @default.
- W4289928105 hasConceptScore W4289928105C125473707 @default.
- W4289928105 hasConceptScore W4289928105C126838900 @default.
- W4289928105 hasConceptScore W4289928105C142724271 @default.
- W4289928105 hasConceptScore W4289928105C16005928 @default.
- W4289928105 hasConceptScore W4289928105C2776294769 @default.
- W4289928105 hasConceptScore W4289928105C2777411683 @default.
- W4289928105 hasConceptScore W4289928105C2777658100 @default.
- W4289928105 hasConceptScore W4289928105C2779323059 @default.
- W4289928105 hasConceptScore W4289928105C2991914496 @default.
- W4289928105 hasConceptScore W4289928105C3020132585 @default.
- W4289928105 hasConceptScore W4289928105C502942594 @default.
- W4289928105 hasConceptScore W4289928105C534262118 @default.
- W4289928105 hasConceptScore W4289928105C71924100 @default.
- W4289928105 hasConceptScore W4289928105C74864618 @default.
- W4289928105 hasIssue "9" @default.
- W4289928105 hasLocation W42899281051 @default.