Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289940704> ?p ?o ?g. }
- W4289940704 endingPage "646" @default.
- W4289940704 startingPage "628" @default.
- W4289940704 abstract "The treatment of femoral nonunion with large segmental bone defect is still challenging. Although magnesium alloys have been considered potential materials for such a treatment, their application is limited by their fast degradation. Adding bioceramic particles into magnesium to form Mg-matrix composites is a promising strategy to adjust their biodegradation rates and to improve their mechanical properties and cytocompatibility further. Here, we developed an extrusion-based additive manufacturing technique to fabricate biodegradable Mg-Zn/bioceramic composite scaffolds ex-situ. Inks carrying a Mg-Zn powder and 5, 10 and 15% β-tricalcium phosphate (TCP) powder particles were investigated regarding the dispersion of β-TCP particles in the inks and viscoelastic properties. Optimally formulated inks were then employed for subsequent 3D printing of porous composite scaffolds. The in vitro biodegradation rate of the scaffolds containing 5% β-TCP decreased to 0.5 mm/y, which falls within the range desired for critical-sized bone substitution. As compared to the monolithic Mg-Zn scaffolds, the elastic moduli and yield strengths of the composite scaffolds were much enhanced, which remained in the range of the cancellous bone properties even after 28 d of in vitro degradation. The Mg-Zn/5TCP and Mg-Zn/10TCP scaffolds also exhibited improved biocompatibility when cultured with preosteoblasts, as compared to Mg-Zn scaffolds. In addition, the ALP activity and mineralization level of the composite scaffolds were much enhanced in the extracts of the composite scaffolds. Taken together, this research marks a great breakthrough in fabricating porous Mg-matrix composite scaffolds that meet several design criteria in terms of appropriate biodegradation rate, mechanical properties, and bioactivity. The treatment of posttraumatic femoral nonunion with large segmental bone defect is still challenging. In this study, we developed a multi-material extrusion-based additive technique to fabricate porous Mg/bioceramic composite scaffolds for such a treatment. The technique allowed for the fine-tuning of printable inks to optimize the dispersion of micro-sized particles. The relative densities of the struts of the fabricated composite scaffolds reached 99%. The added bioceramic particles (β-TCP) exhibited proper interfacial bonding with the Mg alloy matrix. The porous Mg-based composite possessed desired biodegradability, bone-mimicking mechanical properties throughout the in vitro biodegradation period and improved bioactivity to bone cells. These results demonstrated great prospects of extrusion-based 3D printed porous Mg materials to be developed further as ideal biodegradable bone-substituting materials." @default.
- W4289940704 created "2022-08-06" @default.
- W4289940704 creator A5036454877 @default.
- W4289940704 creator A5039414238 @default.
- W4289940704 creator A5043058149 @default.
- W4289940704 creator A5045517614 @default.
- W4289940704 creator A5061534100 @default.
- W4289940704 creator A5074766156 @default.
- W4289940704 creator A5076798158 @default.
- W4289940704 creator A5081972473 @default.
- W4289940704 creator A5085851098 @default.
- W4289940704 creator A5091727098 @default.
- W4289940704 date "2022-10-01" @default.
- W4289940704 modified "2023-10-05" @default.
- W4289940704 title "Extrusion-based additive manufacturing of Mg-Zn/bioceramic composite scaffolds" @default.
- W4289940704 cites W1964236866 @default.
- W4289940704 cites W1968432601 @default.
- W4289940704 cites W1977021878 @default.
- W4289940704 cites W1984001609 @default.
- W4289940704 cites W1988791764 @default.
- W4289940704 cites W1997695587 @default.
- W4289940704 cites W2004548695 @default.
- W4289940704 cites W2005234019 @default.
- W4289940704 cites W2014637539 @default.
- W4289940704 cites W2014843745 @default.
- W4289940704 cites W2019230464 @default.
- W4289940704 cites W2020010650 @default.
- W4289940704 cites W2022718531 @default.
- W4289940704 cites W2026405619 @default.
- W4289940704 cites W2042455866 @default.
- W4289940704 cites W2042944073 @default.
- W4289940704 cites W2055248506 @default.
- W4289940704 cites W2061130566 @default.
- W4289940704 cites W2061582414 @default.
- W4289940704 cites W2065001537 @default.
- W4289940704 cites W2066430204 @default.
- W4289940704 cites W2072645400 @default.
- W4289940704 cites W2076460442 @default.
- W4289940704 cites W2077476507 @default.
- W4289940704 cites W2089894855 @default.
- W4289940704 cites W2108646033 @default.
- W4289940704 cites W2109954298 @default.
- W4289940704 cites W2120559167 @default.
- W4289940704 cites W2154016206 @default.
- W4289940704 cites W2159210886 @default.
- W4289940704 cites W2238350425 @default.
- W4289940704 cites W2341221840 @default.
- W4289940704 cites W2346474971 @default.
- W4289940704 cites W245194097 @default.
- W4289940704 cites W2467801340 @default.
- W4289940704 cites W2514218902 @default.
- W4289940704 cites W2553610650 @default.
- W4289940704 cites W2571123579 @default.
- W4289940704 cites W2582900369 @default.
- W4289940704 cites W2589454543 @default.
- W4289940704 cites W2596065414 @default.
- W4289940704 cites W2597236742 @default.
- W4289940704 cites W2753373802 @default.
- W4289940704 cites W2770721249 @default.
- W4289940704 cites W2775339381 @default.
- W4289940704 cites W2794078050 @default.
- W4289940704 cites W2794199014 @default.
- W4289940704 cites W2795991820 @default.
- W4289940704 cites W2802376958 @default.
- W4289940704 cites W2824920554 @default.
- W4289940704 cites W2880763788 @default.
- W4289940704 cites W2890756208 @default.
- W4289940704 cites W2906314946 @default.
- W4289940704 cites W2908830787 @default.
- W4289940704 cites W2912688790 @default.
- W4289940704 cites W2918984864 @default.
- W4289940704 cites W2920828674 @default.
- W4289940704 cites W2934347029 @default.
- W4289940704 cites W2944146978 @default.
- W4289940704 cites W2947429787 @default.
- W4289940704 cites W2949700077 @default.
- W4289940704 cites W2952216378 @default.
- W4289940704 cites W2981062522 @default.
- W4289940704 cites W3001130564 @default.
- W4289940704 cites W3002934564 @default.
- W4289940704 cites W3016195335 @default.
- W4289940704 cites W3016803776 @default.
- W4289940704 cites W3020317636 @default.
- W4289940704 cites W3047404452 @default.
- W4289940704 cites W3048415101 @default.
- W4289940704 cites W3126246477 @default.
- W4289940704 cites W3157583867 @default.
- W4289940704 cites W3196345869 @default.
- W4289940704 cites W3212838636 @default.
- W4289940704 cites W4200205608 @default.
- W4289940704 cites W4248349954 @default.
- W4289940704 cites W4255452286 @default.
- W4289940704 cites W657286339 @default.
- W4289940704 doi "https://doi.org/10.1016/j.actbio.2022.08.002" @default.
- W4289940704 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35940565" @default.
- W4289940704 hasPublicationYear "2022" @default.
- W4289940704 type Work @default.
- W4289940704 citedByCount "9" @default.