Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289945596> ?p ?o ?g. }
- W4289945596 abstract "Abstract Secondary organic aerosols (SOA) are formed from oxidation of hundreds of volatile organic compounds (VOCs) emitted from anthropogenic and natural sources. Accurate predictions of this chemistry are key for air quality and climate studies due to the large contribution of organic aerosols to submicron aerosol mass. Currently, only explicit models, such as the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO‐A), can fully represent the chemical processing of thousands of organic species. However, their extreme computational cost prohibits their use in current chemistry‐climate models, which rely on simplified empirical parameterizations to predict SOA concentrations. This study demonstrates that machine learning can accurately emulate SOA formation from an explicit chemistry model with an approximate error of 2%–8%, up to five days for several precursors and for potentially up to one month for recurrent neural network models, and with 100 to 100,000 times speedup over GECKO‐A, making it computationally useable in a chemistry‐climate model. We generated the training data using thousands of GECKO‐A box simulations sampled from a broad range of initial environmental conditions, and focused on three representative SOA precursors: the oxidation by OH of two anthropogenic (toluene, dodecane), and the oxidation by O 3 of one biogenic VOC ( α ‐pinene). We compare several neural models and quantify their underlying uncertainty and robustness. These are promising results, suggesting that neural network models could be applied to predict SOA in chemistry‐climate models, limited however to the range of environmental conditions that were considered in the training datasets." @default.
- W4289945596 created "2022-08-06" @default.
- W4289945596 creator A5009581872 @default.
- W4289945596 creator A5013616568 @default.
- W4289945596 creator A5046107298 @default.
- W4289945596 creator A5050222649 @default.
- W4289945596 creator A5054250257 @default.
- W4289945596 creator A5073244853 @default.
- W4289945596 creator A5074843395 @default.
- W4289945596 creator A5090837088 @default.
- W4289945596 date "2022-10-01" @default.
- W4289945596 modified "2023-09-30" @default.
- W4289945596 title "Neural Network Emulation of the Formation of Organic Aerosols Based on the Explicit GECKO‐A Chemistry Model" @default.
- W4289945596 cites W1498436455 @default.
- W4289945596 cites W1942410970 @default.
- W4289945596 cites W1978493871 @default.
- W4289945596 cites W1991969881 @default.
- W4289945596 cites W2046884997 @default.
- W4289945596 cites W2063091265 @default.
- W4289945596 cites W2064675550 @default.
- W4289945596 cites W2089538061 @default.
- W4289945596 cites W2102865297 @default.
- W4289945596 cites W2113631861 @default.
- W4289945596 cites W2116608634 @default.
- W4289945596 cites W2122966070 @default.
- W4289945596 cites W2137913544 @default.
- W4289945596 cites W2138542831 @default.
- W4289945596 cites W2139445651 @default.
- W4289945596 cites W2140285739 @default.
- W4289945596 cites W2141782758 @default.
- W4289945596 cites W2157952317 @default.
- W4289945596 cites W2161205508 @default.
- W4289945596 cites W2166349750 @default.
- W4289945596 cites W2177814458 @default.
- W4289945596 cites W2787931125 @default.
- W4289945596 cites W2794678663 @default.
- W4289945596 cites W2800819102 @default.
- W4289945596 cites W2808400960 @default.
- W4289945596 cites W2895144725 @default.
- W4289945596 cites W2971940059 @default.
- W4289945596 cites W2973767616 @default.
- W4289945596 cites W3007927169 @default.
- W4289945596 cites W3020184660 @default.
- W4289945596 cites W3026901656 @default.
- W4289945596 cites W3033526161 @default.
- W4289945596 cites W3040129451 @default.
- W4289945596 cites W3047163080 @default.
- W4289945596 cites W3090474448 @default.
- W4289945596 cites W3102041920 @default.
- W4289945596 cites W3129963220 @default.
- W4289945596 cites W4254689893 @default.
- W4289945596 cites W4280639185 @default.
- W4289945596 doi "https://doi.org/10.1029/2021ms002974" @default.
- W4289945596 hasPublicationYear "2022" @default.
- W4289945596 type Work @default.
- W4289945596 citedByCount "5" @default.
- W4289945596 countsByYear W42899455962023 @default.
- W4289945596 crossrefType "journal-article" @default.
- W4289945596 hasAuthorship W4289945596A5009581872 @default.
- W4289945596 hasAuthorship W4289945596A5013616568 @default.
- W4289945596 hasAuthorship W4289945596A5046107298 @default.
- W4289945596 hasAuthorship W4289945596A5050222649 @default.
- W4289945596 hasAuthorship W4289945596A5054250257 @default.
- W4289945596 hasAuthorship W4289945596A5073244853 @default.
- W4289945596 hasAuthorship W4289945596A5074843395 @default.
- W4289945596 hasAuthorship W4289945596A5090837088 @default.
- W4289945596 hasBestOaLocation W42899455961 @default.
- W4289945596 hasConcept C119857082 @default.
- W4289945596 hasConcept C121332964 @default.
- W4289945596 hasConcept C149810388 @default.
- W4289945596 hasConcept C153294291 @default.
- W4289945596 hasConcept C159985019 @default.
- W4289945596 hasConcept C162324750 @default.
- W4289945596 hasConcept C178790620 @default.
- W4289945596 hasConcept C185592680 @default.
- W4289945596 hasConcept C186060115 @default.
- W4289945596 hasConcept C192562407 @default.
- W4289945596 hasConcept C204323151 @default.
- W4289945596 hasConcept C2779345167 @default.
- W4289945596 hasConcept C39432304 @default.
- W4289945596 hasConcept C41008148 @default.
- W4289945596 hasConcept C49999975 @default.
- W4289945596 hasConcept C50522688 @default.
- W4289945596 hasConcept C50644808 @default.
- W4289945596 hasConcept C508106653 @default.
- W4289945596 hasConcept C86803240 @default.
- W4289945596 hasConceptScore W4289945596C119857082 @default.
- W4289945596 hasConceptScore W4289945596C121332964 @default.
- W4289945596 hasConceptScore W4289945596C149810388 @default.
- W4289945596 hasConceptScore W4289945596C153294291 @default.
- W4289945596 hasConceptScore W4289945596C159985019 @default.
- W4289945596 hasConceptScore W4289945596C162324750 @default.
- W4289945596 hasConceptScore W4289945596C178790620 @default.
- W4289945596 hasConceptScore W4289945596C185592680 @default.
- W4289945596 hasConceptScore W4289945596C186060115 @default.
- W4289945596 hasConceptScore W4289945596C192562407 @default.
- W4289945596 hasConceptScore W4289945596C204323151 @default.
- W4289945596 hasConceptScore W4289945596C2779345167 @default.
- W4289945596 hasConceptScore W4289945596C39432304 @default.
- W4289945596 hasConceptScore W4289945596C41008148 @default.